
PacketCable™/CableHome™ KDC Lab User Guide

(Last update: 31 May, 2018)

IPfonix, Inc.
330 Weld County Rd. 16½

Longmont
CO 80504-9467

USA

Tel: +1 303 682 2412

info@ipfonix.com

http://www.ipfonix.com

-- 1 of 65--

Table of Contents
1 Intended Audience...7
2 PacketCable/CableHome KDC Versions..7
3 Hardware Requirements..7
4 Software Requirements...7

4.1 Linux Software Requirements...7
5 Overview...8
6 Installing the Software..8

6.1 Running multiple KDCs on one machine..8
6.2 Directory hierarchy..9

6.2.1 Files in <KDC>...9
6.2.2 Files in <INI>..9

7 Files in <INI>/keys...9
8 Files in <INI>/packetcable/certificates* and <INI>/cablehome/certificates*.................10

8.1 Certificate Use...12
9 The <INI>/allow and <INI>/deny directories...13
10 Time..13
11 Log file..13
12 PacketCable 2.0...14
13 Command Line Options..14

13.1 -append...14
13.2 -cout <filename>..14
13.3 -cwd <directory-name>..15
13.4 -D...15
13.5 -named-pipe <named-pipe-name>...15
13.6 -verbose-cert-check..15
13.7 --version...15

14 Operating the PacketCable pseudo-provserver...15
14.1 Leaking SNMPv3 keys..16
14.2 REKEY..17

15 OCSP..18
16 Jabber..18
17 Administration...18
18 Monitoring Statistics...18
19 INI configuration file..20

19.1 [compliance] section..21
19.1.1 compliant =...21

19.2 [admin] section..22
19.2.1 admin =...22
19.2.2 password =..22
19.2.3 port =...22

19.3 [checks] section...23
19.3.1 check authority key identifier =..23
19.3.2 check basic constraints =..23
19.3.3 check kdc cert =..23
19.3.4 check key usage =...23
19.3.5 check local system cert =..23

-- 2 of 65--

19.3.6 check manufacturer cert =...23
19.3.7 check manufacturer certificate signature =...23
19.3.8 check mta device cert =...24
19.3.9 check mta device certificate signature =...24
19.3.10 check mta manufacturer cert =..24
19.3.11 check mta manufacturer certificate signature =..24
19.3.12 check pkauth checksum =...24
19.3.13 check ps element cert =...24
19.3.14 check ps element certificate signature =...24
19.3.15 check service provider cert =..24

19.4 [general] section...24
19.4.1 allow duplicate cert keys =..24
19.4.2 allow kdc cert loose subject =...24
19.4.3 allow kdc cert principal name mismatch =...25
19.4.4 allow kdc cert realm mismatch =..25
19.4.5 allowed packets per minute =...25
19.4.6 check company name =...26
19.4.7 check ip address =...26
19.4.8 console debug level =..26
19.4.9 delete old logs =..27
19.4.10 dh store size =...27
19.4.11 drop dos datagrams =..27
19.4.12 dynamic service keys =...28
19.4.13 element id =...28
19.4.14 force error reply to as req =...28
19.4.15 force error reply to tgs req =...28
19.4.16 FQDN =..29
19.4.17 interface address =..29
19.4.18 log debug level =...29
19.4.19 log timer =...29
19.4.20 maximum client clock skew =..30
19.4.21 maximum log file size =...30
19.4.22 maximum ps backoff =...30
19.4.23 maximum ps clock skew =..31
19.4.24 maximum ticket duration =...31
19.4.25 minimum ps backoff =..31
19.4.26 minimum ticket duration =...32
19.4.27 n saved log files =...32
19.4.28 pc20 =..32
19.4.29 peer<n> =..33
19.4.30 peering =...33
19.4.31 ping =..33
19.4.32 print thread info =...34
19.4.33 provisioning server is available =...34
19.4.34 ps message cache size =..34
19.4.35 realm =..35
19.4.36 replay cache size =..35
19.4.37 require critical keyusage =..35

-- 3 of 65--

19.4.38 require ip address in requests =...36
19.4.39 respond from port 88 =...36
19.4.40 send root certificate =..36
19.4.41 status file name =..36
19.4.42 support first oakley group =..37
19.4.43 test for duplicate datagram =...37
19.4.44 test socket port =...37
19.4.45 test sockets =...37
19.4.46 ticket extension =..38
19.4.47 worker threads =...38

19.5 [ipv6] section...39
19.5.1 enable =...39
19.5.2 fqdn =..39
19.5.3 ipv6 in mta fqdn =...39
19.5.4 kerberos enable =..39
19.5.5 provserver enable =...40

19.6 [jabber] section...40
19.6.1 destination =..40
19.6.2 jid =...40
19.6.3 password =..40

19.7 [ocsp] section...41
19.7.1 check device certificates =..41
19.7.2 default =..41
19.7.3 interface address =..41
19.7.4 max skew =...41
19.7.5 ocsp =..42
19.7.6 port =...42
19.7.7 responder address =...42
19.7.8 timeout =...42

19.8 [pkcross] section..43
19.8.1 lifetime =...43
19.8.2 maximum backoff =..43
19.8.3 maximum skew =..43
19.8.4 nameserver =...43

19.9 [pseudo ps] section...44
19.9.1 allow non-standard source port =..44
19.9.2 allow wakeup =...44
19.9.3 append to leak keys file =...44
19.9.4 ap-rep subkey =...44
19.9.5 check OIDs =..45
19.9.6 ciphersuites =..45
19.9.7 compliant =...45
19.9.8 delay wakeup keys =...45
19.9.9 eue config file hash =..46
19.9.10 eue config file key =..46
19.9.11 eue config url =...46
19.9.12 force error reply to ap req =..46
19.9.13 interface address =..47

-- 4 of 65--

19.9.14 leak keys file =..47
19.9.15 leak keys named pipe =...47
19.9.16 mac prov filename =...47
19.9.17 mta config file hash =...48
19.9.18 mta config file key =...48
19.9.19 mta config url =...48
19.9.20 pc 1.5 =..49
19.9.21 ping =..49
19.9.22 pseudo ps =...49
19.9.23 pseudo ps engine id =..49
19.9.24 pseudo ps fqdn =...50
19.9.25 pseudo ps prov filename =..50
19.9.26 pseudo ps snmp port =..51
19.9.27 snmp enable =...51
19.9.28 snmpv1 response =..51
19.9.29 worker threads =...52

19.10 [pseudo ps ipv6] section..52
19.10.1 enable =...52
19.10.2 fqdn =..52

19.11 [rekey] section..52
19.11.1 ciphersuites =..53
19.11.2 enable =...53
19.11.3 grace period =..53
19.11.4 lifetime =...53
19.11.5 re-establish =...54
19.11.6 server =..54
19.11.7 session key =...54
19.11.8 spi =...54

19.12 [statistics] section...55
19.12.1 named pipe =..55

19.13 [testing] section..55
19.13.1 as req =..55
19.13.2 as rep =..55
19.13.3 dh private value =..56
19.13.4 dh public value =...56
19.13.5 dh shared secret =..56
19.13.6 directory =...56
19.13.7 krb error =...56
19.13.8 local system cert =...56
19.13.9 manufacturer cert =...56
19.13.10 mta device cert =...56
19.13.11 mta fqdn req =...56
19.13.12 mta fqdn rep =...56
19.13.13 mta fqdn session key =..56
19.13.14 mta manufacturer cert =..57
19.13.15 packetcable server cert =...57
19.13.16 ps element cert =...57
19.13.17 received datagram =..57

-- 5 of 65--

19.13.18 service key =...57
19.13.19 service provider cert =...57
19.13.20 session key =...57
19.13.21 tgs req =...57
19.13.22 tgs rep =...57
19.13.23 ticket =..57
19.13.24 unencrypted ticket =..58

19.14 [violations] section...58
19.14.1 Numbered violations...58
19.14.2 Unnumbered violations...60

19.14.2.1 ap error checksum =...60
19.14.2.2 ap error sequence number =...60
19.14.2.3 as rep signature =...60
19.14.2.4 as rep nonce =..60
19.14.2.5 checksum =..60

19.15 Minimal configuration...60
20 Dynamic Service Keys..61
21 PacketCable 1.x IPv6 Support..62
22 Troubleshooting..63

22.1 Errors during startup..63
22.1.1 The KDC says that there is an “unexpected number of chains” in a certificate
directory...63

22.2 Errors during operation..64
22.2.1 The KDC processes an AS-REQ and produces an AS-REP, but the MTA will
not accept it..64
22.2.2 The KDC seems to be ignoring an entry in the kdc.ini file.............................64

-- 6 of 65--

1 Intended Audience
This document is designed to help anyone wishing to configure and run the IPfonix, Inc.
PacketCable/CableHome KDC.

2 PacketCable/CableHome KDC Versions
The PacketCable/CableHome KDC is available in versions for Linux and Windows1.
Except for minor differences, the versions are functionally identical. The Windows
version is intended for use only under controlled lab conditions, since we cannot
recommend using the Windows platform for real deployment networks that support
paying subscribers.

The IPfonix, Inc. KDC software is identical regardless of its environment (PacketCable,
CableHome or both) environment. Which functions and features are available is
controlled by the license file provided to you by IPfonix, Inc.

3 Hardware Requirements
The Linux and Windows version of the KDC operate on minimal PC-class hardware
(although for reliability reasons, inexpensive PC-type machines are not recommended
except in a lab environment). A reasonable minimal PC configuration is:

● 128 MB Main Memory

● 4 GB Hard drive

● Network Interface Card

● 700 MHz processor

Depending on the use that is made of the KDC, systems that fall substantially short of
these requirements may also offer satisfactory performance, especially in a lab
environment.

4 Software Requirements
The KDC has been tested under common versions of Windows. The Linux version is
currently built and undergoes extensive testing on the 32-bit and 64-bit versions of
Debian 7. It also undergoes basic testing on several other common distributions. The
codebase is designed with portability in mind, and we believe that the KDC should
operate under any reasonably current version of Linux.

4.1 Linux Software Requirements
The Linux version requires access to the following dynamic (shared) libraries:

● linux-gate.so.1

1 Starting with this release, Solaris is no longer supported. If you need a version of the KDC for Solaris,
please contact us.

-- 7 of 65--

● libc.so.6

● /lib/ld-linux.so.2

● libgcc_s.so.1

● libpthread.so.0

● libstdc++.so.6

● libm.so.6

All these libraries should be supplied by your distribution (and are usually installed by
default).

5 Overview
The IPfonix PacketCable/CableHome KDC has been designed to implement all the
relevant requirements contained in the PacketCable Security Specification and the
CableHome Specification (including ECNs applied to the latest published versions).
Henceforth, we will simply refer to these as “the specification” or “the security
specification”.

As of this writing, there are no known cases in which the KDC fails to meet the
requirements contained in the specification.

This document describes how to configure and operate the Linux and Windows versions
of the KDC. Reasonable familiarity with the operating system on which the KDC is
running is assumed. In this document, examples will assume that the software is running
under Linux; in cases where a non-obvious change is necessary in order for the software
to run correctly under Windows, this will be clearly noted.

6 Installing the Software
The KDC executable is a file called kdc (Linux) or KDC.EXE (Windows). This
executable can be placed in any directory. For simplicity, we will refer to this directory as
<KDC>; typically this is actually a directory such as /usr/local/kdc/ in Linux, or
C:\KDC in Windows. Because the KDC requires access to system ports, it is important
that, under Linux, the KDC executable be installed as setuid root. (Usually, the simplest
thing to do is merely to install and run the KDC from a root account.)

6.1 Running multiple KDCs on one machine
It is possible to run multiple copies of the KDC simultaneously on a single machine. In
order to do this, each KDC should be run out of its own directory hierarchy (i.e., <KDC>
for the KDCs should be different directories), and the values in the respective kdc.ini
files must not conflict with one another. In particular, the interface addresses for the
KDCs must be unique.

-- 8 of 65--

6.2 Directory hierarchy
As described in this section, the KDC requires that a particular structure of subdirectories
be present, and that certain files exist in those subdirectories. If any required file is absent,
the KDC will abort on start-up and provide a message on the console indicating the
nature of the problem.

Under Windows, the directory <KDC>\windows must be present; the corresponding
directory in Linux is <KDC>/linux. We refer to this directory as <INI>, because this
is where the configuration file, kdc.ini, is located.

In addition, the directories <INI>/keys, <INI>/packetcable/certificates*
and <INI>/cablehome/certificates* must exist and, as explained below, must
be correctly populated.

6.2.1 Files in <KDC>
Only two files are required in <KDC>: the executable and the license file. The license file
is kdc.license and should have been included with your software package. The
license file is plain ASCII, and, at a minimum, indicates the entity to which the license
has been issued, as well as the expiration date. This information is also written to the
console when the KDC starts to execute.

6.2.2 Files in <INI>
Only one file is required in <INI>: the file kdc.ini, which is the KDC configuration
file. This file is read at KDC start-up, and defines the running “context” for the KDC. See
below for details of the contents of the kdc.ini file.

If no kdc.ini file is present, the KDC will ask the user for the IP address that the KDC
is to use, and will then try to continue to start, using default values for all its
configuration parameters.

7 Files in <INI>/keys
The directory <INI>/keys contains the service keys known to the KDC. In order to
make testing easier, these keys are unencrypted2. In PacketCable and CableHome, all
service keys are currently 24-octet 3DES keys. The format for a key file3 is:

 Two octets: key version number as a 16-bit integer, in network order

 24 octets: the actual 3DES key

Thus, a key file is 26 octets in length. It is important to recognise that this file is raw
binary; it does not contain ASCII-encoded hexadecimal characters. When used for
testing, the value of the first two octets is generally unimportant, since neither
PacketCable nor CableHome currently have a defined mechanism for key versioning.

2They should therefore be made readable only by the root user.
3 Service keys generated by the dynamic key mechanism described in section 20 are stored in a more
complicated format. These cannot easily be edited directly. They can, however, be replaced by keys in the
26-octet format described in this section, should the need arise.

-- 9 of 65--

The name of key files reflects the full Kerberos name of the service to which the key
applies. The normal format for a Kerberos principal identifier is:

component/component/.../component@REALM

However, the forward slash character (/) is not a valid character in a filename in Linux or
Windows. Therefore, the KDC replaces the forward slash with the comma character (,)
when encoding the name of the Kerberos service name to create a file name.

So, for example, suppose that we wish to provision the KDC with a service key for a
CMS whose FQDN is cms1.ratco.com, in the realm RATCO.COM. Then, in the
directory <INI>/keys we would create a file called
cms,cms1.ratco.com@RATCO.COM. This file would contain exactly 26 octets. The
first two octets are the version number (typically 0x0000) and the remaining 24 octets are
the service key that is shared with the CMS.

If a service key file is present but its length is incorrect, the KDC will create a new
service key for the named principal identifier, and write that key to the file at start-up
time.

Note that the MTA FQDN messaging has a service name of mtafqdnmap. Therefore, if
the KDC is expected to support MTA FQDN messaging to a provisioning server, then
there must be a service key present for the service
mtafqdnmap,<provserver FQDN>@<REALM>.

The service key that the KDC will use for PKCROSS tickets should be placed in a file
whose name is of the form pkcross@<REALM>. For example, a KDC in the realm
IPFONIX.COM that is intended to issue PKCROSS tickets should have a key in the file
pkcross@IPFONIX.COM.

8 Files in <INI>/packetcable/certificates*
and <INI>/cablehome/certificates*

These directories are used to store several X.509 certificates in standard DER-encoded
binary format4, along with the KDC private key. The KDC will separately examine every
directory of the form <INI>/packetcable/certificates* and
<INI>/packetcable/certificates*, and check the contents for validity. As
might be expected, certificates related to PacketCable (or Euro-PacketCable or
IPCablecom) functionality reside in the <INI>/packetcable/certificates*
directories; certificates for CableHome functions reside in the
<INI>/cablehome/certificates* directories.

For example, a user who wishes the KDC to interact with clients using PacketCable
certificates and also with those using Euro-PacketCable certificates, may have two
directories on the KDC, possibly called <INI>/packetcable/certificates-
packetcable and <INI>/packetcable/certificates-
europacketcable.

4The KDC will also recognize most PEM-formatted certificates, but since this format is not standardized
and differs slightly according to the application that created the certificate, the KDC might fail to recognize
such a certificate.

-- 10 of 65--

mailto:component/component/.../component@REALM

Inside each directory, certificates may have any name, but each must end with the file
extension .cer. The directory must contain certificates corresponding to the complete
Service Provider hierarchy, and also the root of the client hierarchy. At start-up, the KDC
will check that the certificates in the service provider hierarchy chain correctly; it will
also subject the certificates to a number of tests to ensure that they meet the applicable
CableHome, PacketCable, Euro-PacketCable or IPCablecom requirements.

Each certificate directory is treated independently of the others, except that the public
keys of the MTA Root certificates must all be unique. This is to ensure that, when the
KDC receives a PKINIT request from a client, it can correctly determine which set of
certificates is to be used to generate the reply.

In addition to the certificates themselves, each certificates* directory must contain
the RSA private key that corresponds to the KDC certificate in the directory (this is
necessary in order that the KDC can correctly sign AS-REP messages).The KDC expects
that the key will be in a file named KDC_private_key.

There are several formats commonly used to transfer RSA keys among systems. The KDC
allows you to use PKCS#8, PKCS#1 or a proprietary format to load the key into the
KDC. The KDC will attempt to read the file KDC_private_key in each of the
different possible formats (in order: PKCS#8, PKCS#1, proprietary).

Note that if you use one of the PKCS formats, the file must contain the binary
information exactly as defined by the relevant PKCS specification5.

As an alternative to the PKCS formats, you can use a simple proprietary ASCII hex
format that allows operators to create a more friendly file that can more easily be parsed
by a human in the case that some operation related to decryption or signature creation
appears to be behaving incorrectly.

In this format, each element of the private key is stored on a separate line, and each
element is represented by a series of hexadecimal characters. The elements, in order, are:

modulus

public exponent

exponent

prime_0

prime_1

prime_exponent_0

prime_exponent_1

coefficient

So, for example, a KDC_private_key file in proprietary format might look like this:

a6 b0 5a c0 2a 6e 8d 36 3b 40 cf 86 c5 09 ef ... ee c7 53

01 00 01

6e 54 de cc c1 89 49 58 f3 21 73 fb bd a2 54 ... e2 31 11

dd 77 92 67 58 20 df 24 da db 9f 1c 59 1e d9 ... 57 4a ab

5As for certificates, the KDC can read most PEM-encoded PKCS#1 and PKCS#8 keys.

-- 11 of 65--

c0 ae 2b 8d 19 05 00 2e 21 f1 1e 89 87 c2 88 ... b5 75 f9

0b c0 ca be 3d 49 11 4e 8d 66 d6 5c d4 c5 f4 ... 53 61 9d

07 38 7f b9 51 ee b6 0b 04 8a 9c b2 5a bc 17 ... a2 c3 41

75 0e f5 16 9f 6e 33 1a 44 f0 1f 8d 5a 22 18 ... c8 c2 23

where the public exponent is the value 0x010001 and the value of the second prime is
0xc0ae2b...75f9.

8.1 Certificate Use
In the AS-REQ message, the client sends to the KDC a chained pair of certificates. When
it receives an AS-REQ, the KDC looks at the sets of certificates that were read at start-up
in order to determine which client root certificate was used to sign the received MTA
Manufacturer (for PacketCable) or Manufacturer (for CableHome) certificate. For the
remainder of the processing related to the received message, it uses only the certificates
(and private key) that were in the same directory as the matching client root certificate.

The KDC package includes a set of compliant certificates that may be used in a testing
environment. Naturally, if the user prefers to use his own certificates, he may do so
simply by ensuring that they are distributed correctly to the client(s) and the KDC.

Note that the MTA Root certificate and the CableLabs Manufacturer Root certificate
distributed in the package are not the same as the official MTA Root and CableLabs
Manufacturer Root certificates. This allows a user to test without the need for the delay
and expense concomitant with obtaining an “official” MTA Manufacturer or
Manufacturer certificate. If the user already possesses an MTA Manufacturer or
Manufacturer certificate signed by the appropriate official VeriSign root certificate, then
the user can use this certificate simply by replacing the MTA_Root.cer or
CableLabs_Manufacturer_Root.cer file with the root certificate distributed by
VeriSign. The official root certificates are not included in this package in order to avoid
any issues related to possible copyright infringement.

The private keys corresponding to the unofficial MTA Root and CableLabs Manufacturer
Root certificate is also distributed with the KDC software. This allows MTA vendors to
generate correctly-chained MTA Manufacturer, Manufacturer, MTA Device and PS
Element certificates.

Similarly, the Service Provider Certificate hierarchy distributed with the KDC uses
certificates generated independently by IPfonix, Inc. These certificates conform to the
specification, but are not rooted in the official root key pair (which is held by Verisign;
only Verisign has the private key from this key pair, hence only they can create certificates
rooted in the official key pair).

In normal operation, the KDC performs compliance checks on certificates at start-up and
when an AS-REQ message is received, to ensure that the certificates meet the
requirements in the specification.

-- 12 of 65--

9 The <INI>/allow and <INI>/deny directories
If the directories <INI>/allow or <INI>/deny exist, the KDC will examine each of
these directories for valid binary X.509 certificates contained in files with the .cer
extension. Certificates in the <INI>/allow directory are added to an internal “allow”
list maintained by the KDC; similarly, certificates in the <INI>/deny directory are
added to an internal “deny” list.

When the KDC receives a PKINIT request, it examines all the certificates in the request,
and compares them to the “allow” and “deny” lists. The subsequent processing of the
request depends on whether the certificate was found on one of these lists:

• If the “allow” and “deny” lists are both empty, the KDC will process the request as
normal;

• If the “deny” list is empty, but the “allow” list is not empty, the KDC will process the
request only if it contains one or more certificates that are present in the “allow” list;

• If the “allow” list is empty, but the “deny” list is not empty, the KDC will process the
request unless one or more of the certificates in the request is present in the “deny”
list;

• If both the “allow” list and the “deny” list are populated, the KDC will process the
request only if one or more certificates in the request are present in the “allow” list and
none of the certificates is present in the “deny” list.

The “allow” and “deny” lists may be used, for example, to ensure that only clients from a
particular set of vendors are provided with tickets.

10 Time
It is important that the KDC have a correct notion of UTC. AS-REQ messages coming
from a client contain the current UTC time, and if the KDC has a different notion of time,
then it will return a clock skew error, as required by Kerberos and the security
specification. Usually, the easiest way to ensure that the KDC can correctly derive UTC is
simply to keep the system clock on UTC. Whatever method is chosen, though, the system
must return the correct UTC when the gmtime() call is made; the KDC uses this call to
check the clock skew between itself and clients.

Depending on the stability of the hardware clock, it might be useful to run NTP on the
KDC. Usually this is not necessary in a lab environment, but if the hardware clock gains
or loses more than a few seconds per day, running NTP will ensure that the KDC remains
correctly synchronised with UTC.

11 Log file
The KDC maintains a log file in real time. The log file is located in the directory
<KDC>/log. The name of the logfile is in the form IPfonixyyyymmddhhmm.log
and it contains the time at which the KDC was started. By default, the KDC automatically
closes the log file and opens a new one at the start of a new UTC day. A continuously-
running KDC maintains a week’s worth of logs. If the KDC is left running for more than

-- 13 of 65--

a week, it will delete files more than a week old at the start of each day. This culling
affects only files that were created since the last time that the KDC was started.

The KDC permits an alternative method of managing log files. Instead of creating a new
file per day, entries in the <INI>/kdc.ini file allow the user to cause a new logfile to
be created when the current file exceeds a certain size. When this method is chosen, the
KDC also allows the user to decide how many log files to keep. In lab situations, there is
probably nothing to be gained by changing the default behaviour.

The log file contains real-time status information (most of this is also written to the
standard output device). It also includes binary copies of all messaging into and out of the
KDC (this latter information is not written to the standard output). All entries are time-
stamped, contain the name or number of the thread responsible for the output, and
provide an indication of which threads are currently busy. In the case of KDC
malfunction, you are strongly encouraged to mail a copy of the current log file to
IPfonix, Inc. to help us to debug the problem. In addition to the log file, it helps us if you
send a copy of the <INI>/kdc.ini file.

When copying or e-mailing the log file, please remember that it is a binary file and take
any appropriate steps to ensure that it is not mutilated during transport.

In the event of a KDC crash, we strongly request that you provide us with all the details
possible, including copies of the <INI>/kdc.ini and log files. We have heavily
stress-tested the KDC code (under Linux) and believe that no sequence of incoming
packets should be able to crash the KDC.

12 PacketCable 2.0
The KDC can be easily configured to support PacketCable 2.0. In the [general]
section of the kdc.ini file, place the following line:

pc20 = true

This will enable IPv6 support and support for the PacketCable 2.0 EUE interface to the
Provisioning Server.

13 Command Line Options
The following options may be passed to the KDC on start-up:

13.1 -append
Appends the standard (console) output instead of overwriting the destination file. Works
only if the -cout option is also used.

13.2 -cout <filename>
Sets the standard (console) output to <filename>.

-- 14 of 65--

13.3 -cwd <directory-name>
Sets the working directory to <directory-name>.

13.4 -D
Runs the KDC as a daemon (Linux only).

13.5 -named-pipe <named-pipe-name>
Sends log output to a named pipe instead of a file. This option works only in Linux.

13.6 -verbose-cert-check
Runs a verbose check of the certificates available to the KDC. You should start he KDC
with this option if you are having difficulty configuring the KDC with certificates
correctly. When used with this option, the KDC will perform a verbose check of the
certificates and then exit.

13.7 --version
Causes the KDC to print information relating to the particular build and then to exit.

14 Operating the PacketCable pseudo-provserver
The IPfonix, Inc. KDC includes code that permits it to respond to PacketCable clients
attempting to provision themselves using the flows described in the PacketCable
provisioning specification. We call this code the “pseudo-provserver” or “pseudo-ps”.

This does not mean that the KDC acts as a fully fledged PacketCable Provisioning Server
(which typically also performs MTA management functions, although that is not required
by the PacketCable specifications). It does mean that an MTA can exchange provisioning
messages with the KDC as if it were a Provisioning Server. This allows an MTA vendor
to test and debug the client code without the need for a real Provisioning Server in the
lab. Since the KDC can be configured to leak SNMPv3 keys6, it also allows MSOs with
in-place backend provisioning systems to create systems in which the KDC acts as a
front-end to the pre-existing provisioning system, without the additional expense of
adding a PacketCable-compliant provisioning server.

The messages supported by the pseudo-ps are (referencing Figure 5 in the PacketCable
provisioning specification):

 MTA-13: processing incoming the AP-REQ;

 MTA-14: creating and returning the AP-REP;

 MTA-15: processing incoming the INFORM (including sending a RESPONSE
that is not included in Figure 5);

 MTA-19: creating and sending the SET;

6 Linux version only

-- 15 of 65--

 MTA-25: processing incoming the INFORM (including sending a RESPONSE
that is not included in Figure 5).

The operation of the pseudo-ps is controlled entirely by entries in the kdc.ini file. For
details of this operation, see section 19.9. The pseudo-ps supports commuication with the
MTA over IPv6; for details of configuration see section 19.10.

Note that since it makes no sense to send and receive MTA FQDN messages to and from
itself, if the pseudo ps is used, then the KDC must be operated in non-compliant mode,
and the command provisioning server is available is automatically set to
false, regardless of any explicit setting in the kdc.ini file.

14.1 Leaking SNMPv3 keys
In the Linux version of the KDC, entries in the kdc.ini file allow the user to leak
SNMPv3 keys to a file or to a named pipe (see section 19.9.15).

Each record in the file or named pipe is delimited with a single LF character (the Linux
End-Of-Line marker).

For each leaked key, the format defined in Table 1 applies (the separator between fields is
a space).

Table 1

Field Format
KEYSTART
USM User Name hexified
Auth key hexified
Priv key hexified
Client IP address dotted decimal
Client SNMP Engine ID hexified
Client engine boots number
Client engine time number
Server SNMP Engine ID hexified
Server engine boots number
Server engine time number
KEYEND

The format “hexified” means the following:

A number <n>, followed by a space, followed by <n> hexadecimal characters.

So, for example, the hexified form of the string test would be: 4 74 65 73 74 .

For example, suppose that the complete record for a leaked key looks like this (all on one
line): KEYSTART 26 4d 54 41 2d 50 72 6f 76 2d 30 30 3a 34 30 3a
37 42 3a 38 38 3a 41 34 3a 34 37 16 88 bb 84 11 f5 82 20 ab
1b 50 0e 03 3f 1d c6 7e 0 10.1.21.130 12 80 00 03 e3 03 00
40 7b 88 a4 45 77 10 25 04 74 65 73 74 123 456 KEYEND

In this example, the USM User Name corresponds to

26 4d 54 41 2d 50 72 6f 76 2d 30 30 3a 34 30 3a 37 42 3a 38 38 3a 41 34 3a 34 37

-- 16 of 65--

which, when decoded, is:

MTA-Prov-00:40:7B:88:A4:47

The Auth key is:

16 88 bb 84 11 f5 82 20 ab 1b 50 0e 03 3f 1d c6 7e

So the actual SNMP authorization key is:

88 bb 84 11 f5 82 20 ab 1b 50 0e 03 3f 1d c6 7e

The Priv key is:

0

So there is no encryption key (meaning that the SNMPv3 messages will be unencrypted).

The IP address of the client is:

10.1.21.130

The SNMP Engine ID of the client is:

12 80 00 03 e3 03 00 40 7b 88 a4 45 77

which corresponds to an actual Engine ID of:

80 00 03 e3 03 00 40 7b 88 a4 45 77

The Engine Boots value of the client is:

10

The Engine Time value of the client is:

25

The SNMP Engine ID of the server is:

04 74 65 73 74

which corresponds to an actual Engine ID of:

74 65 73 74

The Engine Boots value of the server is:

123

The Engine Time value of the server is:

456

14.2 REKEY
The pseudo-provserver supports sending of REKEY messages to clients. A REKEY is
sent when a message of the form “REKEY <IP-address>” is received on the admin
interface (see the KDC Admin Guide).

The details of the transmitted REKEY message are controlled by entries in the [rekey]
section of the kdc.ini file.

-- 17 of 65--

15 OCSP
The KDC contains an OCSP (Online Certificate Status Protocol) client that allows the
user to check for revoked certificates in real time. Operation of the OCSP client is
controlled by the entries in the [ocsp] section of the kdc.ini file. By default, the
OCSP client is turned off, but it can be turned on by including the line:

ocsp = true

in the [ocsp] section.

When operating the OCSP client, it is important to define the correct behaviour for the
KDC when it is unable to determine the status of a certificate. That is, if the status of a
certificate cannot be ascertained, should the KDC accept or reject the certificate? By
default, the KDC will accept such certificates; this behavior can be changed by including
the line:

default = revoked

in the [ocsp] section.

The OCSP client formats requests as HTTP messages (see RFC 2560), and sends them
over TCP to the OCSP responder.

16 Jabber
The KDC includes a minimal jabber client, which is controlled by entries in the
[jabber] section of the kdc.ini file.

When configured to send jabber messages, the following messages are sent to the
configured jabber client:

1. A message that states that the KDC has started;

2. A message whenever an AS-REP is sent to a client;

3. A message that states that the KDC has been stopped.

17 Administration
The administration API is available to OEM resellers under NDA. A simple example of
an administration program is included in the KDC release package. The documentation
for this program is included in a separate Administration Guide.

18 Monitoring Statistics
The Linux version of the KDC supports monitoring ongoing operational statistics through
the use of a named pipe. This feature is controlled by providing a name for the named
pipe in the [statistics] section of the kdc.ini file.

If a pipe is named in the kdc.ini file, then the pipe is created at startup and statistics
are written to this pipe once per minute as long as the KDC is operational. The

-- 18 of 65--

information written to the pipe can be parsed and presented by whatever mechanism the
user prefers.

The output comprises a single line of text comprising several fields separated by the
semi-colon (;) character. Each field is of the form:

statistic-name = statistic-value

The following table describes all of the statistics written to the pipe by the KDC.

Name of Statistic Meaning
curtime The current time (UTC)

starttime Time at which the KDC started (UTC)

uptime The amount of time, in days, that the KDC has
been running. Given to two decimal places.

rcvd-AS-REQ-total Total number of AS-REQ messages received
rcvd-AS-REQ-rate Number of AS-REQ messages received in the

last minute
sent-AS-REP-total Total number of AS-REP messages transmitted
sent-AS-REP-rate Number of AS-REP messages sent in the last

minute
sent-KRB-ERROR-total Total number of KRB-ERROR messages

transmitted
sent-KRB-ERROR-rate Number of KRB-ERROR messages transmitted

in the last minute
unexpired-tickets Number of tickets that have been issued and

have not yet expired
unexpired-tickets-change Change in the last minute in the number of

tickets that have been issued and have not yet
expired

pct-licensed-capacity The current percentage of the licensed number of
valid tickets, given to two decimal places

sent-MTA-FQDN-REQ-total Total number of MTA FQDN requests that have
been transmitted

sent-MTA-FQDN-REQ-rate Number of MTA FQDN requests that were
transmitted in the last minute

rcvd-MTA-FQDN-REP-total Total number of MTA FQDN replies that have
been received

rcvd-MTA-FQDN-REP-rate Number of MTA FQDN replies that have been
received in the last minute (not including errors)

rcvd-MTA-FQDN-KRB-ERROR-total Total number of KRB-ERROR replies that have
been received to MTA FQDN requests

-- 19 of 65--

Name of Statistic Meaning
rcvd-MTA-FQDN-KRB-ERROR-rate Number of KRB-ERROR replies that were

received to MTA FQDN requests in the last
minute

rcvd-TGS-REQ-total Total number of TGS-REQ messages that have
been received

rcvd-TGS-REQ-rate Number of TGS-REQ messages that were
received in the last minute

rcvd-msgs-SNMP-port-total Total number of messages received on the SNMP
port (only if pseudo provserver is enabled)

rcvd-msgs-SNMP-port-rate Number of minutes received on the SNMP port
in the last minute (only if pseudo provserver is
enabled)

rcvd-AP-REQ-total Total number of AP-REQ messages received
(only if pseudo provserver is enabled)

rcvd-AP-REQ-rate Number of AP-REQ messages received in the
last minute (only if pseudo provserver is
enabled)

sent-AP-REP-total Total number of transmitted AP-REP messages
(only if pseudo provserver is enabled)

sent-AP-REP-rate Number of AP-REP messages transmitted in the
last minute (only if pseudo provserver is
enabled)

sent-PS-KRB-ERROR-total Total number of KRB-ERROR messages
transmitted by the pseudo provserver (only if
pseudo provserver is enabled)

sent-PS-KRB-ERROR-rate Number of KRB-ERROR messages transmitted
by the pseudo provserver in the last minute (only
if pseudo provserver is enabled)

The values relating to the pseudo provserver are output only if the pseudo provserver
functions are enabled by the [pseudo ps] section of the kdc.ini file.

19 INI configuration file
The file <INI>/kdc.ini contains configuration information read by the KDC at start-
up time.

The format of kdc.ini closely follows the usual Windows format for .ini files. The
file contains a number of named sections, and within each section is a series of
configuration commands. Please note that all entries in the kdc.ini file are case
sensitive. The file parser is rather unforgiving, so if the KDC appears to be misbehaving,

-- 20 of 65--

the first thing to do is to look carefully at the exact contents of the kdc.ini file to make
sure that there are no typographical errors.

Within the kdc.ini file, a section name is indicated by square brackets. Most
commands go in the [general] section, so that the start of a valid kdc.ini file
might look like this:

[general]

interface address = 127.0.0.1

realm = IPFONIX.COM

FQDN = kdc.ipfonix.com

Lines in the kdc.ini file are ignored if they begin with a hash sign (#). Blank lines are
ignored, as are lines that contain commands that the parser does not understand.

The next section of this manual details the [compliance] section. Following this is a
complete list of all the commands that may be placed in the sections:

• [admin]

• [checks]

• [general]

• [ipv6]

• [jabber]

• [ocsp]

• [pkcross]

• [pseudo ps]

• [pseudo ps ipv6]

• [rekey]

• [statistics]

• [testing]

• [violations]

Other sections and their contents are not currently documented.

19.1 [compliance] section

19.1.1 compliant =
By default, the KDC attempts to operate in a PacketCable/CableHome-compliant manner.
However, many of the commands in the [general] section attempt to customize the
behaviour of the KDC so that it operates in ways that are not PacketCable- and/or
CableHome-compliant, but which may be appropriate for a testing environment. By
default, the KDC will ignore such commands. This is a safety measure, so that an

-- 21 of 65--

operator cannot easily operate a deployed KDC in an insecure or non-compliant manner,
even if the [general] section contains commands that would result in such operation.

The user should exercise caution when operating the KDC in non-compliant mode. Many
of the commands that are accepted when operating in this mode seriously degrade the
level of security offered by the KDC.

In order to force the KDC to process all the commands in the [general] section, even
if they result in non-compliant behaviour, the kdc.ini file must contain a
[compliance] section with a command that sets the value of compliant to false.

The default value is true.

This command is not required.

Example:

compliant = false

19.2 [admin] section

19.2.1 admin =
This parameter is used to control globally whether the (local) KDC administration
function is enabled. In release builds of the KDC software, remote administration is
permanently disabled.

The default value is false.

This command is not required.

Example:

admin = true

19.2.2 password =
This sets the password that the KDC will use to authenticate incoming administration
requests.

The default value is the empty string.

This command is not required.

Example:

password = ipfonixpw

19.2.3 port =
This controls the TCP port on which the KDC will listen for administrative commands.

The default value is 411.

This command is not required.

Example:

-- 22 of 65--

port = 9999

19.3 [checks] section
The [checks] section should only be used if you need to set the KDC so that it does
not perform checks that are required by the security specification. By default, all these
checks are set to true. Setting any of these checks to false results in a non-compliant
KDC. More importantly, the KDC was not designed to run without these checks. The
options in the [checks] section have been added at the request of various MTA
vendors in order to help them perform test partial interoperability when the non-KDC
device is not yet completely compliant to the security specification.

Whenever a test is skipped, there is a possibility that the KDC will behave in an
unexpected manner, since the rest of the KDC code will assume that the test has been
applied and passed. In other words, skipping tests may result in the violation of contracts
in the internal KDC code. If you see unexpected KDC behaviour, please turn all the
checks back on and make sure that the unexpected behaviour persists before reporting a
problem.

19.3.1 check authority key identifier =
Controls checking of the authorityKeyIdentifier extension in certificates received in an
AS-REQ.

19.3.2 check basic constraints =
Controls checking of the basicConstraints extension in certificates received in an
AS-REQ.

19.3.3 check kdc cert =
Controls checking of the validity of the KDC certificate at start-up time.

19.3.4 check key usage =
Controls checking of the keyUsage extension in certificates received in an AS-REQ.

19.3.5 check local system cert =
Controls checking of the validity of the Local System certificate at start-up time.

19.3.6 check manufacturer cert =
This is used to control all checking of the Manufacturer certificate received in an
AS-REQ.

19.3.7 check manufacturer certificate signature =
This is used to control checking of the signature in the Manufacturer certificate.

-- 23 of 65--

19.3.8 check mta device cert =
Controls all checking of the MTA device certificate received in an AS-REQ.

19.3.9 check mta device certificate signature =
Controls checking of the signature in the MTA device certificate.

19.3.10 check mta manufacturer cert =
Controls all checking of the MTA manufacturer certificate received in an AS-REQ.

19.3.11 check mta manufacturer certificate signature =
Controls checking of the signature in the MTA manufacturer certificate.

19.3.12 check pkauth checksum =
Controls whether the pkAuth checksum field in the AS-REQ is verified.

19.3.13 check ps element cert =
This is used to control all checking of the PS Element certificate received in an AS-REQ.

19.3.14 check ps element certificate signature =
This is used to control checking of the signature in the PS Element certificate.

19.3.15 check service provider cert =
Controls checking of the validity of the Service Provider certificate at start-up time.

19.4 [general] section

19.4.1 allow duplicate cert keys =
By default, the KDC will ensure that the keys encapsulated by certificates do not match
any keys presented in a different certificate. This closes a security hole that could occur if
a vendor were to re-use keys in a misguided effort to cut costs. If the value of this
parameter is true, then the KDC no longer perform this check and will allow multiple
MTAs to register with the same keys.

The default value is false.

This command is not required.

Example:

allow duplicate cert keys = true

19.4.2 allow kdc cert loose subject =
The security specification is ambiguous about the first [OU] field in the KDC certificate.
As written, the specification could be read in such a way that the field is simply optional.

-- 24 of 65--

However, CableLabs informs us that the intention is that the first [OU] field is mandatory
if the KDC certificate is signed by a Local System certificate. By default, then, the
IPfonix, Inc. KDC behaves as CableLabs expects. However, this command allows the
KDC to accept a KDC certificate in which the [OU] field is absent even if the KDC
certificate is signed by a Local System certificate. This command is ignored unless the
KDC is being operated in non-compliant mode.

The default value is false.

This command is not required.

Example:

allow kdc cert loose subject = true

19.4.3 allow kdc cert principal name mismatch =
The KDC certificate is normally required to contain a principal name that is consistent
with the configured realm of the KDC. (The security specification requires an MTA to
reject a response in which the name in the certificate does not match the local realm
name.) However, sometimes it is useful in a lab environment to violate this requirement.
This command, when true, turns off the internal checking that the KDC normally
performs at start-up to ensure that the principal name in the certificate is consistent with
the configured realm.

The default value is false.

This command is not required.

Example:

allow kdc cert principal name mismatch = true

19.4.4 allow kdc cert realm mismatch =
The KDC certificate is normally required to contain a realm name that matches the
configured realm of the KDC. (The security specification requires an MTA to reject a
response in which the realm in the certificate does not match the local realm name.)
However, sometimes it is useful in a lab environment to violate this requirement. This
command, when true, turns off the internal checking that the KDC normally performs at
start-up to ensure that the realm name in the certificate matches the configured realm.

The default value is false.

This command is not required.

Example:

allow kdc cert realm mismatch = true

19.4.5 allowed packets per minute =
If the KDC is configured to drop datagrams from clients that appear to be mounting a
denial-of-service attack (see the drop dos datagrams command), this entry in the

-- 25 of 65--

configuration file determines the level at which the KDC will conclude that an attack is
mounted.

The default value is 4 (i.e., a client sending five datagrams in the course of a single
minute will be considered to be mounting an attack.)

This command is not required.

Example:

allowed packets per minute = 10

19.4.6 check company name =
The security specification does not require that the company name in the MTA Device
certificate and the company name in the MTA Manufacturer certificate match. It is good
security practice, however, to ensure that the two names are identical. Therefore, this
check can be enabled with this command if the KDC is being operated in non-compliant
mode.

The default value is false.

This command is not required. This command takes effect only if the KDC is operated in
non-compliant mode.

Example:

check company name = true

19.4.7 check ip address =
The security specification requires the KDC to check that the source IP address of
incoming requests matches the contents of the caddr field in the request. Under some
lab configurations, it may be difficult to arrange for the IP address of the MTA to match
the address in the caddr field. Setting check ip address to false turns off this
check at the KDC. Note that setting this to false will, by definition, result in non-
compliant behaviour on the KDC. It is strongly recommended that you do not set this
value to false unless your lab configuration requires it. This parameter does not affect
other checks against the caddr field; it turns off only the check that ensures that the
value of the field matches the source IP address of the incoming datagram.

The default value is true.

This command is not required.

Example:

check ip address = false

19.4.8 console debug level =
This controls the number of messages written to the console while the KDC is running.
The KDC supports eight levels of debugging messages, numbered 0 through 7. Most
messages are produced at level 5. Running at level 7 produces an extremely verbose log.

-- 26 of 65--

In ordinary operation, it is probably reasonable to run at console debug level 4. See also
the log debug level command.

The default value is 7.

This command is not required.

Example:

console debug level = 4

19.4.9 delete old logs =
KDC logs are written to the directory <KDC>/log. This command, if true, instructs
the KDC, at startup, to delete any old logs remaining in the <KDC>/log directory from
prior runs. Note that the MSO multisite license cause usage files to be written to the log
directory; these usage files are not affected by this command.

The default value is false (i.e., old logs are not deleted).

This command is not required.

Example:

delete old logs = true

19.4.10 dh store size =
The KDC can pre-calculated sets of Diffie-Hellman parameters. On slow machines,
calculation of Diffie-Hellman parameters can take a perceptible amount of time, and if the
calculation is performed during the process of generating the AS-REP, this can markedly
reduce the throughput of the KDC. By setting this parameter, the user can control the
number of Diffie-Hellman parameters that are pre-calculated and stored for use during an
AS-REQ/AS-REP exchange. The KDC monitors the remaining number of parameters in
storage as parameters are removed (for use in the AS-REP messages), the KDC. When the
number of stored parameters falls below a critical level, the KDC will perform
background calculations to re-fill the store.

The default value is 100. Under normal circumstances, and when running the KDC on a
reasonably powerful machine, there should be no reason to change this value. A value of
0 disables this feature entirely, so that Diffie-Hellman parameters are always calculated at
the time at which they are needed.

This command is not required.

Example:

dh store size = 1000

19.4.11 drop dos datagrams =
KDCs are good targets for denial-of-service (DoS) attacks. If this parameter is true,
then the KDC will attempt to determine when a DoS attack is taking place, and if it
determines that an MTA is attacking it, it will begin to drop packets from that MTA.

-- 27 of 65--

In a lab situation, it is usually best to set this value to false, otherwise the KDC may
appear to be failing to respond to valid requests because it believes that a DoS attack is
taking place.

The default value is true.

This command is not required.

Example:

drop dos datagrams = false

19.4.12 dynamic service keys =
By default, the KDC will operate with support for dynamic service keys as described in
Section 19.15. This means that the KDC will ordinarily respond to requests for dynamic
service keys from other network entities. Setting this command to false turns off this
support.

The default value is true.

This command is not required.

Example:

dynamic service keys = false

19.4.13 element id =
Operators may wish to assign a unique numerical Element ID to a KDC. The value of the
Element ID is set with this command.

The default value is 0.

This command is not required.

Example:

element id = 12345

19.4.14 force error reply to as req =
This command will cause the KDC to respond to AS-REQ messages by sending a KRB-
ERR.

This command is obeyed only when the KDC is in non-compliant mode.

The default value is false.

This command is not required.

Example:

force error reply to as req = true

19.4.15 force error reply to tgs req =
This command will cause the KDC to respond to TGS-REQ messages by sending a KRB-
ERR.

-- 28 of 65--

This command is obeyed only when the KDC is in non-compliant mode.

The default value is false.

This command is not required.

Example:

force error reply to tgs req = true

19.4.16 FQDN =
This defines the fully qualified domain name for the KDC. By convention, domain names
are rendered in lower case. The FQDN should not end with a concluding dot.

There is no default value for this command.

This command is required.

Example:

FQDN = kdc.ipfonix.com

19.4.17 interface address =
This command informs the KDC the value of the IP address (in dotted decimal notation)
on which it should expect to receive Kerberos messaging.

There is no default value for this command.

This command is required.

Example:

interface address = 10.1.2.3

19.4.18 log debug level =
This controls the number of messages written to the log file while the KDC is running.
The KDC supports eight levels of debugging messages, numbered 0 through 7. Most
messages are produced at level 5. Running at level 7 produces an extremely verbose log;
this level is recommended for vendors when debugging their own code against the KDC.
If you need to send a logfile to IPfonix, Inc., we strongly recommend that you send one
generated with the debug level set to 7. See also the console debug level
command.

The default value is 7.

This command is not required.

Example:

log debug level = 7

19.4.19 log timer =
A timer fires inside the KDC once every thirty seconds. Ordinarily the timer fires silently.
By setting this command to true, a DEBUG-level notification will be sent to the
console and the log whenever the timer fires.

-- 29 of 65--

The default value is false.

This command is not required.

Example:

log timer = true

19.4.20 maximum client clock skew =
This defines the maximum allowed clock skew between the client and the KDC, in
seconds. Requests that contain a clock skew greater than this value will be rejected with a
clock skew error. For PacketCable-compliant operation, this value should be set to 300
(i.e., five minutes). However, it is common in testing labs to set this value to a very large
number (several days or weeks) so that statically-generated AS-REQ messages, or
dynamic AS-REQ messages that contain static clock times, may be used without
returning a clock skew error.

The default value is 300.

This command is not required.

Example:

maximum client clock skew = 1000000

19.4.21 maximum log file size =
Ordinarily, the KDC generates a new log file as result of the UTC clock rolling over to a
new day (i.e., a logfile corresponds to a single day). By using the maximum log file
size command, the KDC will instead create a new log file when the current file reaches
the specified size (the size is specified in kB).

Normally, log files are named in a manner that encodes the time at which the logfile was
generated; this is inappropriate when the log files are generated on the basis of size.
Therefore, when this command is used, the current logfile (which still encodes the time at
which the KDC was booted, so it follows the form IPfonix*.log) becomes
IPfonix*.log.1; the file that was IPfonix*.log.1 becomes
IPfonix*.log.2, etc. The total number of log files can be limited with the n saved
log files command.

There is no default value for this command.

This command is not required.

Example:

maximum log file size = 1000

19.4.22 maximum ps backoff =
This defines the maximum time, in tenths of a second, that the KDC will wait after
transmitting an MTA FQDN message before declaring that no response has been received.
Unless your lab contains a rather slow provisioning server, this value should be left at its
default value, which is 50 (i.e., five seconds).

-- 30 of 65--

Note that this is the maximum value of a retry timer. Retries begin at the value given by
the minimum ps backoff parameter (which defaults to 0.5 seconds) and increase
with exponential delays until they reach the value specified by this parameter.

The default value is 50.

This command is not required.

Example:

maximum ps backoff = 100

19.4.23 maximum ps clock skew =
This defines the maximum allowed clock skew between the KDC and any provisioning
servers, in seconds. According to the security specification, the value of this parameter
must not exceed 3600 (i.e., one hour). Any clock skew error returned by a provisioning
server will be ignored if the skew exceeds this value (as demanded by the security
specification).

The default value is 3600.

This command is not required.

Example:

maximum ps clock skew = 1800

19.4.24 maximum ticket duration =
This defines the maximum duration for tickets generated by the KDC. The default unit is
hours; by appending ‘m’ or ‘d’, the units can be changed to minutes or days respectively.
This parameter is used to spread the lifetime of tickets so as to smooth out any “bump” in
ticket requests caused by the fact that most deployments occur during working hours. The
default value is 168 (i.e., seven days), and it is recommended that this value not be
changed. Note that, in order for the KDC to meet the security specification, this parameter
must not be set larger than 168.

The default value is 168.

This command is not required.

Example:

maximum ticket duration = 6d

19.4.25 minimum ps backoff =
This defines the minimum time, in tenths of a second, that the KDC will wait after
transmitting an MTA FQDN message before declaring that no response has been received.
The default value is 5 (i.e., 0.5 seconds).

Note that this is the minimum value of a retry timer. Retries begin at the value given by
this parameter and increase with exponential delays until they reach the value specified by
the maximum ps backoff parameter (which defaults to 5 seconds).

-- 31 of 65--

The default value is 5.

This command is not required.

Example:

minimum ps backoff = 10

19.4.26 minimum ticket duration =
This defines the minimum duration (in hours) for tickets generated by the KDC. The
default unit is hours; by appending ‘m’ or ‘d’, the units can be changed to minutes or
days respectively. This parameter is used to spread the lifetime of tickets so as to smooth
out any “bump” in ticket requests caused by the fact that most deployments occur during
working hours. The default value is 144 (i.e., six days), and it is recommended that this
value not be changed.

The default value is 144.

This command is not required.

Example:

minimum ticket duration = 90m

19.4.27 n saved log files =
This command defines the number of old log files (from the current run) that the KDC
saves. These logfiles may be generated on the basis of date (i.e., one logfile per day,
which is the default behaviour) or size (see the maximum log file size
command).

The default value is 7.

This command is not required.

Example:

n saved log files = 10

19.4.28 pc20 =
This command instructs the KDC to operate in accordance with PacketCable 2.0. In
particular, this enables IPv6 support and support for EUE messaging on the interface to
the Provisioning Server.

The default value is false.

This command is not required.

Example:

pc20 = true

-- 32 of 65--

19.4.29 peer<n> =
The IPfonix, Inc. KDC can be networked in a set of up to ten peers that maintain a
consistent global state across the peered devices. To define a set of peers, each KDC
should identify its peers in the [general] section of the kdc.ini file. The syntax is
easy: simply enter a command of the form:

peer<n> = IP address

for each peer, where <n> is a digit in the range 0 through 9. It is not necessary for the
relationship between peer number and IP address to be consistent across the peered group.
Neither is it necessary for <n> to increment sequentially in the list of peers.

In order for the peering function to be enabled, the command peering = true must
be present in the kdc.ini file.

This command has no default value.

This command is not required.

Example:

Suppose that we wish to form a peered group of three KDCs located at the IP addresses
192.168.0.1, 192.168.0.2 and 192.168.0.3. Then the kdc.ini file for the device at
192.168.0.1 might have an entry that looks like this:

peer2 = 192.168.0.2

peer3 = 192.168.0.3

The entry for the KDC at 192.168.0.2 might look like this:

peer0 = 192.168.0.1

peer3 = 192.168.0.3

And the entry for the KDC at 192.168.0.3 could conceivably contain:

peer5 = 192.168.0.2

peer3 = 192.168.0.1

19.4.30 peering =
This controls the peering function. If true, then the peering function is enabled, if
false, it is disabled.

The default value is false.

This command is not required.

Example:

peering = true

19.4.31 ping =
This controls the a ping function that allows a remote system to determine quickly
whether the KDC is up and processing incoming messages. When this parameter is

-- 33 of 65--

true, then the KDC will respond to an incoming UDP datagram on port 88 that
comprises the ASCII string “ping” by sending a response datagram comprising the word
“pong” to the source port on the device that sent the ping message.

The default value is false.

This command is not required.

Example:

ping = true

19.4.32 print thread info =
This controls whether the busy/free status of all worker threads is included in the lines of
the logfile.

The default value is true.

This command is not required.

Example:

print thread info = false

19.4.33 provisioning server is available =
This defines whether a PacketCable Provisioning Server is available to the KDC.
PacketCable requires that, during the MTA provisioning process, the KDC contact a
provisioning server to check whether the MTA that is requesting a ticket is in fact
properly known to the operator. Setting the value of this command to false tells the
KDC that in fact no such provisioning server is available. As a result, the MTA FQDN
messaging is not performed, and the KDC acts as if such messaging has been performed
and a positive response has been received from a provisioning server.

Note that if the pseudo provisioning server is used, then this command will automatically
be set to false, regardless of any explicit command in the kdc.ini file.

The default for this command is true.

This command is not required.

Example:

provisioning server is available = false

19.4.34 ps message cache size =
This defines the size of the FIFO cache that the KDC generates to store non-error
responses from provisioning servers. Making this cache a non-zero size means that, for a
normal provisioning boot sequence on an MTA, the KDC will cache the initial response
from the provisioning server (i.e., while processing the AS-REQ for the provisioning
server ticket). When, a few seconds later, the MTA requests a ticket for a CMS, the
provisioning server will not need to be re-contacted, since its prior response will be in the
cache. Note that only non-error responses are stored in this cache.

The default value for this command is 0 (i.e., the cache is turned off by default).

-- 34 of 65--

This command is not required.

Example:

ps message cache size = 25

19.4.35 realm =
This defines the realm name in which the KDC is operating. By convention, realm names
are rendered in upper case. If this command is not present in the kdc.ini file, the KDC
will obtain its realm name from the KDC certificate.

The default value for this command is the realm name contained in the KDC certificate.

This command is not required.

Example:

realm = IPFONIX.COM

19.4.36 replay cache size =
This defines the size of the FIFO cache that the KDC generates to store responses that
have already been sent to MTAs. Making this cache a non-zero size means that, if an
identical request arrives at the KDC, the previously-generated response will automatically
be sent, so long as the request and response are found in the cache. Setting the value to
zero will turn off caching of responses.

The default value for this command is 25.

This command is not required.

Example:

replay cache size = 100

19.4.37 require critical keyusage =
An ambiguity in the security specification means that vendors of clients are technically
permitted to include in certificates keyUsage extensions that are not critical. By default,
the IPfonix, Inc. KDC conforms to the required behavior as defined by CableLabs for
compliance: i.e., it will accept such certificates.

However, operators may wish to permit acceptance only of certificates in which the
keyUsage extension is marked as critical (which was the intent of the original
specification, and is the practice of most vendors). The KDC can be configured to reject
certificates that do not mark the keyUsage extension as critical by setting this command
to true.

In order for this command to be executed, the KDC must be operated in non-compliant
mode.

The default value for this command is false.

This command is not required.

-- 35 of 65--

Example:

require critical keyusage = true

19.4.38 require ip address in requests =
The security specification requires the presence of an IP address in incoming Kerberos
requests. Since early versions of the security specification did not require the IP address
to be present, the KDC supports a non-compliant mode in which it does not require an IP
address in inbound requests. To turn off this requirement, set this command to false.

The default value for this command is true.

This command is not required.

Example:

require ip address in requests = false

19.4.39 respond from port 88 =
Normally, the KDC will send its responses from a non-system UDP port (i.e., a port with
a value greater than 1023). Setting this value to true forces the KDC to respond from
UDP port 88. This option is available because some Kerberos clients incorrectly assume
that Kerberos messages from Kerberos servers must originate on port 88. Also, setting
this parameter to true helps some packet sniffers to identify Kerberos messages
coming from the KDC.

The default value for this command is false.

This command is not required.

Example:

respond from port 88 = true

19.4.40 send root certificate =
This parameter controls whether the Service Provider Root certificate is included in the
AS-REP. The security specification defines the behaviour of an MTA when it receives a
root certificate in the reply.

The default value for this command is false.

This command is not required.

Example:

send root certificate = true

19.4.41 status file name =
If this parameter is non-empty, a file reflecting the current status of the KDC will be
written (and overwritten) once per minute.

The default value for this command is /tmp/kdc.status.

-- 36 of 65--

This command is not required.

Example:

status file name = STATUS-FILE

19.4.42 support first oakley group =
The security specification requires support for the second Oakley group. It also says that
KDCs MAY support the first Oakley group. By default the IPfonix KDC will reject MTA
requests that use the first Oakley group (this makes sense, because, since a KDC is
required to support only the second, MTAs should normally use the second Oakley group
by default). Setting this parameter to true will cause the KDC to accept correctly
formatted requests that use the first Oakley group. Note that, for this command to be
processed correctly, oakley must be rendered entirely in lower case.

The default value for this command is false.

This command is not required.

Example:

support first oakley group = true

19.4.43 test for duplicate datagram =
If this is set set to true, the KDC will check incoming datagrams to see if they are
duplicates of one that is already being processed, and, if so, will silently drop the
duplicate datagram without processing it further.

The default value for this command is true.

This command is not required.

Example:

test for duplicate datagram = false

19.4.44 test socket port =
If test sockets is set to true, this command identifies the port to which the test
message should be sent..

The default value for this command is 24680.

This command is not required.

Example:

test socket port = 12345

19.4.45 test sockets =
This command causes the KDC to test whether a socket can actually be used to transmit a
message immediately after it has been bound. The message is sent to the local machine
(either 127.0.0.1 or ::1, as appropriate for the socket). The port number to which the
message is sent is set by the test socket port command. In normal operation,

-- 37 of 65--

some sockets on the KDC are created and bound at startup but may not actually be used
for a considerable period of time. In such cases, a long time may elapse before the user is
informed that a socket is unusable (typically because of a permissions problem). Setting
test sockets to true eliminates this wait.

The default value for this command is false.

This command is not required.

Example:

test sockets = true

19.4.46 ticket extension =
Devices that accept PacketCable-compliant tickets must be prepared to deal with the
posiibility that they contain an extension (because it is legal for a KDC to insert an
extension; in some circumstances, in communication with some devices, it is mandatory
that the KDC do so). Tickets issued to MTAs by the IPfonix, Inc. KDC do not ordinarily
contain extensions. However by setting ticket extension to true, the KDC will
include an extension in the ticket. This allows users to test whether the final recipient of
the ticket can correctly process a ticket that contains an extension.

The default value of this parameter is false.

This command is not required.

Example:

ticket extension = true

19.4.47 worker threads =
The KDC uses a number of internal “worker” threads to process incoming requests. This
command allows the user to change the number of such threads. The only time that this
may improve performance noticeably is in the case where the KDC is being asked to
process a rapid burst of incoming requests and the provisioning server is unable to
generate MTA FQDN reply messages sufficiently quickly. In this case, the KDC will be
left waiting for replies from the provisioning server, and most or all of the threads will be
idling, but none will be available to process additional incoming requests; this will result
in the KDC dropping requests until the provisioning server has cleared the backlog.

The maximum value for this command is limited by the underlying operating system, but
in general the value should be changed by relatively small increments, and values in
excess of about 25 are unlikely to improve burst throughput.

The default value for this command is 10.

This command is not required.

Example:

worker threads = 20

-- 38 of 65--

19.5 [ipv6] section
The IPfonix, Inc. KDC includes support for dual-stack operation, in which it send and
receive IPv6 messages in addition to the normal IPv4 messages. The differences between
IPv4 and IPv6 operation are described in section 21.

This section of the kdc.ini file describes the configuration parameters that may be
placed in the kdc.ini file in order to control the operation of the IPv6 portion of the
KDC.

19.5.1 enable =
This command is used to globally enable IPv6 support. In order to support any IPv6
feature, this parameter must be set to true. If this parameter is true, then the various
IPv6 sub-features may be enabled. If this parameter is false, then any commands that
enable any IPv6 sub-features are ignored.

The default value of this command is false.

This command is not required.

Example:

enable = true

19.5.2 fqdn =
This command contains either an FQDN that resolves to an IPv6 address, or an IPv6
address.

There is no default value for this command.

This command is required when operating with IPv6 enabled..

Example:

fqdn = ::1

19.5.3 ipv6 in mta fqdn =
This command controls whether the KDC will accept IPv6 addresses in MTA FQDN
Reply messages.

The default value of this command is false.

This command is not required.

Example:

ipv6 in mta fqdn = true

19.5.4 kerberos enable =
This command controls whether the KDC will listen for incoming Kerberos messages
(AS-REQ, etc.) from clients using IPv6.

The default value of this command is false.

-- 39 of 65--

This command is not required.

Example:

kerberos enable = true

19.5.5 provserver enable =
This command controls whether the KDC will transmit to the PacketCable provisioning
server over IPv6 (and similarly listen for the reply on IPv6).

The default value of this command is false.

This command is not required.

Example:

provserver enable = true

19.6 [jabber] section
The [jabber] section is used to control high-level messages that may be sent to a
jabber client.

19.6.1 destination =
This identifies the jabber ID (JID) of the client to which messages will be sent.

There is no default value for this command.

This command is not required.

Example:

destination = jabclient@jabber.ipfonix.com

19.6.2 jid =
This identifies the jabber ID (JID) of the KDC. If no resource is included, then the
resource “/kdc” will be automatically added to the JID.

There is no default value for this command.

This command is not required.

Example:

jid = kdc@jabber.ipfonix.com/kdc

19.6.3 password =
This gives the password that the KDC will use to log on to the jabber server.

There is no default value for this command.

This command is not required.

Example:

-- 40 of 65--

password = kdc_password

19.7 [ocsp] section
The [ocsp] section is used to control the behavior of the OCSP client in the KDC.

19.7.1 check device certificates =
When running the OCSP client, the KDC will always check device manufacturer
certificates against the OCSP responder. By default, it will also check individual device
certificates. Setting this command to false will cause it not to check individual device
certificates.

The default value is true.

This command is not required.

Example:

check device certificates = false

19.7.2 default =
This controls the assumed status of a certificate for which the KDC is unable to obtain a
definitive response.. It may take the values good or revoked. Setting the value to
revoked is more secure than good but may be impractical in practice, unless a high-
availability OCSP responder is used.

The default value is good.

This command is not required.

Example:

default = revoked

19.7.3 interface address =
This command informs the KDC the value of the IP address (in dotted decimal notation)
on which it should send messages to the OCSP responder.

The default value is the same as the interface address for the Kerberos messages (set in
the [general] section.

This command is not required.

Example:

interface address = 127.0.0.1

19.7.4 max skew =
This determines the maximum amount of allowed clock skew (in seconds) between the
OCSP client and the OCSP responder. If the skew exceeds this value, the response will be
ignored.

-- 41 of 65--

The default value is 300.

This command is not required.

Example:

max skew = 60

19.7.5 ocsp =
This determines whether the OCSP client is enabled. It may take the values true or
false.

The default value is false.

This command is not required.

Example:

ocsp = true

19.7.6 port =
This identifies the destination TCP port on the OCSP responder to which OCSP requests
will be sent.

The default value is 80.

This command is not required.

Example:

port = 8008

19.7.7 responder address =
The address to which the OCSP client should send OCSP requests.

The default value is 127.0.0.1.

This command is not required.

Example:

responder address = 10.168.0.1

19.7.8 timeout =
This controls the length of the period (in seconds) for which the KDC will wait for a
response from an OCSP responder.

The default value is 10.

This command is not required.

Example:

timeout = 20

-- 42 of 65--

19.8 [pkcross] section
The [pkcross] section is used to control values related to the PKCROSS protocol.

19.8.1 lifetime =
This defines the duration for PKCROSS tickets generated by the KDC. The default unit is
hours; by appending ‘m’ or ‘d’, the units can be changed to minutes or days respectively.
Note that, in order for the KDC to meet the security specification, this parameter must not
be set larger than 168 (which corresponds to seven days).

The default value is 24 (i.e., one day).

This command is not required.

Example:

lifetime = 2d

19.8.2 maximum backoff =
This defines how long, in tenths of a second, the KDC will wait, in the worst case, for the
reply from a KDC in another realm.

The default value is 50 (i.e., five seconds).

This command is not required.

Example:

maximum backoff = 100

19.8.3 maximum skew =
Defines the maximum allowed clock skew, in seconds, during a PKCROSS exchange.

The default value is 300 (i.e., five minutes).

This command is not required.

Example:

maximum skew = 3600

19.8.4 nameserver =
This is the IP address, in dotted decimal notation, of the nameserver that the KDC should
use when attempting to perform the SRV lookup of a remote KDC.

The default value is 127.0.0.1 (i.e., the local KDC itself).

This command is not required.

Example:

nameserver = 192.168.0.25

-- 43 of 65--

19.9 [pseudo ps] section
The [pseudo ps] section is used to control the PacketCable pseudo-provserver code
(see section 14).

19.9.1 allow non-standard source port =
According to the security specification, requests to a provisioning server must occur from
port number 1293. Setting this option to true causes the KDC to accept requests from
any client port.

The default value is false.

This command is not required.

Example:

allow non-standard source port = true

19.9.2 allow wakeup =
Normally, the pseudo ps will not allow a value of zero for the server nonce in AP Request
messages. If this parameter is set to true, the KDC will permit the nonce to contain
zero. This permits WAKEUP and REKEY messaging.

The default value is false

This command is not required.

Example:

allow wakeup = true

19.9.3 append to leak keys file =
When leaking keys to a file with the leak keys file command, the KDC by default
will overwrite any existing file. Setting append to leak keys file to true
causes the KDC to append keys to a pre-existing file instead of deleting any pre-existing
contents.

The default value is false

This command is not required.

Example:

append to leak keys file = true

19.9.4 ap-rep subkey =
Normally, a new subkey is generated every time that the pseudo-ps sends an AP-REP.
Using this command allows the user to pre-define the subkey that will be used in all
AP-REP messages, which can be useful for testing and debugging purposes. The subkey
is a hex value encoding 46 octets, of the form 0x01ab23cd....

There is no default value.

-- 44 of 65--

This command is not required.

Example (should be all on one line in the kdc.ini file):

ap-rep subkey =
0xa0b26591bc05f1e60a9b5c7d2e6fa0b244e629754f10f3002991f43f3f
8209dc867f32a0ca6f779f108abc76390fff28

19.9.5 check OIDs =
Normally the pseudo-ps checks the OIDs in an enrollment INFORM to ensure that a valid
PacketCable/tcomLabs/IETF MIB is identified, and if a valib MIB is not identified then a
SET is not sent. If this command is present and set to false, then this check is not
performed and the SET is sent regardless of the presence of a valid MIB.

The default value is: true.

This command is not required.

Example:

check OIDs = false

19.9.6 ciphersuites =
This command lists the acceptable ciphersuites that may be submitted by the MTA in the
AP-REQ. Each acceptable ciphersuite is in the form xx/yy where xx is the hexadecimal
value of the authentication algorithm and yy is the hexadecimal value of the encryption
algorithm. Acceptable ciphersuites are separated by spaces.

The default value is the single ciphersuite: 21/20.

This command is not required.

Example:

ciphersuites = 21/21 21/20

19.9.7 compliant =
This command allows the operator to control whether the pseudo-ps operates in a manner
that is strictly compliant with the PacketCable sepcification.

The default value is true.

This command is not required.

Example:

compliant = false

19.9.8 delay wakeup keys =
This command allows the operator to control the time at which keys are leaked. Normally,
they are leaked as soon as they are sent to the client; however, this raises the possibility
that a key will be leaked that is never acknowledged or used by the client. By setting this
parameter to true, the KDC delays leaking a key until the client has acknowledged it.

-- 45 of 65--

The default value is false.

This command is not required.

Example:

delay wakeup keys = true

19.9.9 eue config file hash =
This provides the hash of the configuration file that is to be returned to an EUE client in
provisioning step MTA-19. The format is a string of hexadecimal characters. The total
length of the string is either 32 octets (for MD5) or 40 octets (for SHA-1).

There is no default value for this command.

This command is required if the pseudo provserver function is turned on.

Example (all on one line in the actual kdc.ini file):

eue config file hash =
123456789012345678901234567890aabbccddee

19.9.10 eue config file key =
This provides the encryption key of the configuration file that is to be returned to an EUE
client in provisioning step MTA-19. The format is a string of hexadecimal characters.

If this string is empty, then the configuration file is assumed to be unencrypted. The total
length of a non-empty string must be 16 octets.

There is no default value for this command.

This command is not required.

Example:

eue config file key = 1234567890aabbcc

19.9.11 eue config url =
This defines the URL of the configuration file that is to be returned to an EUE client in
provisioning step MTA-19.

There is no default value for this command.

This command is required if the pseudo provserver function is turned on.

Example (all on one line in the actual kdc.ini file):

eue config url =
tftp://tftp.ipfonix.com/default_config_file.txt

19.9.12 force error reply to ap req =
This command will cause the KDC to respond to AP-REQ messages by sending a KRB-
ERR.

-- 46 of 65--

The default value is false.

This command is not required.

Example:

force error reply to ap req = true

19.9.13 interface address =
This command informs the KDC the value of the IP address (in dotted decimal notation)
on which it should expect to receive messages for the pseudo provserver.

The default value is the same as the interface address for the Kerberos messages (set in
the [general] section.

This command is not required.

Example:

interface address = 10.1.2.4

19.9.14 leak keys file =
This provides a file into which SNMP keying information will be leaked. The format of
the entries in this file is defined in section 14.1; note that the entries are unencrypted, so
this command should be used with care.

There is no default value for this command.

This command is not required.

Example:

leak keys file = mtakeys.txt

19.9.15 leak keys named pipe =
This provides a named pipe into which SNMP keying information will be leaked. The
format of the entries in this pipe is defined in section 14.1 of this manual; note that the
entries are unencrypted, so this command should be used with care. This command
applies to the Linux version only.

There is no default value for this command.

This command is not required.

Example:

leak keys name pipe = fifo.buffer

19.9.16 mac prov filename =
This provides the name of a file that contains provisioning information based on the
MAC address instead of the IP address as is used in the pseudo ps prov
filename command.

-- 47 of 65--

The contents of the file should be exactly as described in the pseudo ps prov
filename command, except that the MAC address replaces the
pktcMtaDevTypeIdentifier. So, for example:

[AA:BB:CC:DD:EE:FF]

url = <URL of config file>

hash = <hash of config file as hex characters>

key = <key of config file as hex characters>

(the “key” line is optional).

There is no default value for this command.

This command is not required.

19.9.17 mta config file hash =
This provides the hash of the configuration file that is to be returned to the client in
provisioning step MTA-19. The format is a string of hexadecimal characters. The total
length of the string is either 32 octets (for MD5) or 40 octets (for SHA-1).

There is no default value for this command.

This command is required if the pseudo provserver function is turned on.

Example (all on one line in the actual kdc.ini file):

mta config file hash =
123456789012345678901234567890aabbccddee

19.9.18 mta config file key =
This provides the encryption key of the configuration file that is to be returned to the
client in provisioning step MTA-19. The format is a string of hexadecimal characters.

If this string is empty, then the configuration file is assumed to be unencrypted. The total
length of a non-empty string must be 16 octets.

There is no default value for this command.

This command is not required.

Example:

mta config file key = 1234567890aabbcc

19.9.19 mta config url =
This defines the URL of the configuration file that is to be returned to the client in
provisioning step MTA-19.

There is no default value for this command.

This command is required if the pseudo provserver function is turned on.

Example (all on one line in the actual kdc.ini file):

-- 48 of 65--

mta config url =
tftp://tftp.ipfonix.com/default_config_file.txt

19.9.20 pc 1.5 =
There is an inconsistency between the requirements in PacketCable 1.0 and
PacketCable 1.5. PacketCable 1.5 requires that pktcMtaDevProvConfigKey not be sent to
an MTA if the configuration file is not encrypted. However, PacketCable 1.0 requires that
it be sent. This parameter is used to control whether the pseudo ps conforms to
PacketCable 1.0 or PacketCable 1.5.

The default value is false. (That is: by default, the pseudo ps conforms to
PacketCable 1.0.)

This command is not required.

Example:

pc 1.5 = true

19.9.21 ping =
This controls the a ping function that allows a remote system to determine quickly
whether the KDC is up and processing incoming messages. When this parameter is
true, then the KDC will respond to an incoming UDP datagram on the psudo-ps port
that comprises the ASCII string “ping” by sending a response datagram comprising the
word “pong” to the source port on the device that sent the ping message. Internally, the
incoming message is handed to a worker thread (if one is free) and processed by that
thread, just as if it were a Kerberos message.

The default value is false.

This command is not required.

Example:

ping = true

19.9.22 pseudo ps =
This controls whether the pseudo-provserver code is enabled.

The default value for this command is false.

This command is not required.

Example:

pseudo ps = true

19.9.23 pseudo ps engine id =
This defines the SNMP engine ID for the pseudo-provserver. If the value is preceded with
0x, then it is interpreted as a hex string. Otherwise, the value is interpreted as a literal
string.

-- 49 of 65--

The default value for this command is IPfonix pseudo ps engine.

This command is required if the pseudo provserver function is turned on.

Example 1:

pseudo ps engine id = 0x112233abccfebd

Example 2:

pseudo ps engine id = Operator engine ID

19.9.24 pseudo ps fqdn =
This defines the Fully Qualified Domain Name for the pseudo-provserver.

There is no default value for this command.

This command is required if the pseudo provserver function is turned on.

Example:

pseudo ps fqdn = pseudops.ipfonix.com

19.9.25 pseudo ps prov filename =
In addition to the commands pseudo ps config file hash, pseudo ps
config file key and pseudo ps config url, the pseudo-ps can read a file to
obtain values that will be returned when appropriate in MTA-19.

Using the pseudo ps prov filename command allows the KDC to load multiple
values of {hash, key, URL}, so that different MTAs (e.g., MTAs from different
manufacturers) can be provided with different files.

When the pseudo-ps processes an incoming MTA-15 INFORM, it examines the INFORM
to identify the value of pktcMtaDevTypeIdentifier. If there is a match with the contents of
the file identified by the pseudo ps prov filename command, the values from
that file are used; if here is no match, then the values from the kdc.ini file are used in
the MTA-19 response.

There is no default value for this command.

The format of the contents of the pseudo ps prov filename file follows that of a
standard .ini file:

[value of pktcMtaDevTypeIdentifier]

url = <URL of config file>

hash = <hash of config file as hex characters>

key = <key of config file as hex characters>

The “key” line is optional.

So a complete example would be:

• in the kdc.ini file:

pseudo ps prov filename = prov_info.ini

-- 50 of 65--

• in the prov_info.ini file:

[pktc1.0:05190101000201020B0501050608090C01010D01010F0101100
107]

url = http://kdc.ipfonix.com/config.txt

hash = 1234567890123456789012345678901234567890

key =

[pktc1.0:05190101000201020B0501050608090C01010D01010F0101100
108]

url = http://kdc.ipfonix.com/config.1.txt

hash = aabbccddeeffeeddccbbaabbccddeeffeeddccbb

key = 1234567890aabbcc

As in this example, a blank line should separate the information for each MTA.

19.9.26 pseudo ps snmp port =
This identifies the port on which the pseudo-provserver will listen for incoming SNMP
messages.

The default value for this command is 162.

This command is not required.

Example:

pseudo ps snmp port = 10162

19.9.27 snmp enable =
Enables processing of SNMP messages from MTAs. If this is false, then such messages
are ignored by the pseudo-provserver.

The default value for this command is true.

This command is not required.

Example:

snmp enable = false

19.9.28 snmpv1 response =
This controls whether SNMP responses are compatible with SNMP version 1 or SNMP
version 2 (responses in SNMP version 3 are compatible with those in version 2). If this is
true, then SNMP repsonses are compatible with SNMP version 1; otherwise such
responses are compatible with SNMP version 2.

The default value for this command is false.

This command is not required.

-- 51 of 65--

Example:

snmpv1 response = true

19.9.29 worker threads =
The pseudo-provserver is multi-threaded. This command may be used to change the
number of threads used by the pseudo-provserver. Under normal circumstances, it is
unlikely that the user should change this value.

The default value for this command is 10

This command is not required.

Example:

worker threads = 15

19.10 [pseudo ps ipv6] section
The [pseudo ps ipv6] section is used to control access to the PacketCable pseudo-
provserver via IPv6.

19.10.1 enable =
This parameter must be set to true in order to allow clients to access the pseudo-
provserver over IPv6.

The default value is false.

This command is not required.

Example:

enable = true

19.10.2 fqdn =
This parameter must contain either an IPv6 address or a name that DNS can resolve to an
IPv6 address.

There is no default value.

This command is not required; it is required for IPv6 operation.

Example:

fqdn = pseudo-ps.ipv6.ipfonix.com

19.11 [rekey] section
This section controls the details of REKEY messages sent by the pseudo provserver after
receiving REKEY commands on the admin interface. In order to use the REKEY
function, the KDC must be operated in non-compliant mode.

-- 52 of 65--

19.11.1 ciphersuites =
This command lists the acceptable ciphersuites that may be submitted by the MTA. The
pseudo-ps places the acceptable ciphersuites into the REKEY message that is sent to the
client. Each acceptable ciphersuite is in the form xx/yy where xx is the hexadecimal
value of the authentication algorithm and yy is the hexadecimal value of the encryption
algorithm. Acceptable ciphersuites are separated by spaces.

The default value is the single ciphersuite: 21/20.

This command is not required.

Example:

ciphersuites = 21/21 21/20

19.11.2 enable =
This command must be present and set to true in order to send REKEY messages.

The default value for this command is false.

This command is not required.

Example:

enable = true

19.11.3 grace period =
The command sets the duration of the grace period, in seconds. The pseudo-ps places the
grace period into the REKEY message that is sent to the client.

The default value for this command is 150.

This command is not required.

Example:

grace period = 600

19.11.4 lifetime =
The command sets the duration of the Security Parameter Index, in seconds. The pseudo-
ps places the lifetime into the REKEY message that is sent to the client.

The default value for this command is 300.

This command is not required.

Example:

lifetime = 1200

-- 53 of 65--

19.11.5 re-establish =
This command controls whether the re-establish flag is set in REKEY messages sent to
the client. The value may be either true or false.

The default value for this command is false.

This command is not required.

Example:

re-establish = true

19.11.6 server =
This command must be present and must identify a grammatically correct principal
identifier in order to send REKEY messages. The actual existence of the identified server
is not checked. The pseudo-ps places the principal identifier into the REKEY message
that is sent to the client.

There is no default value for this command.

This command is not required.

Example:

server = cms/cms.ratco.ipfonix.com@IPFONIX.COM

19.11.7 session key =
This command identifies the session key that is used to generate the HMAC for the
REKEY message. It takes the form of a string of hex characters, preceded by “0x”.

The default value for this command is “0x0”.

This command is not required.

Example:

session key = 0xaabbcc0123

19.11.8 spi =
The pseudo-ps uses the number identified by this command as the Security Parameter
Index in the REKEY message that is sent to the client.

The default value for this command is zero.

This command is not required.

Example:

spi = 1234

-- 54 of 65--

19.12 [statistics] section
The KDC can be configured to output ongoing statistical information about its operation.
This information is sent to a named pipe (in Linux only). This capability is controlled by a
command in the [statistics] section.

19.12.1 named pipe =
This command gives the name of the named pipe to which statistics are to be sent. If this
command is not present, then statistics are not output. The named pipe can be read by any
user. It is important to understand that the pipe MUST be read by some process, otherwise
it will eventually block (when the allocated kernel space is filled).

There is no default value for this command.

This command is not required.

Example:

named pipe = statistics-pipe

19.13 [testing] section
The [testing] section contains commands that cause output to be written to disk in a
more convenient form than the ordinary log file. Apart from the directory command,
all commands are of the form:

<message type or internal variable> = <true or false>

If the value is set to true, then any instances of that particular message type (or the
value of the internal variable at the time it is used) are written, in real time, to a pair of
files in the directory named by the directory command. One file has the extension
.bin, and contains the raw binary of the message; the other file has the extension .hex
and contains a hex dump of the same information. The filename also encodes the type of
the message or the name of the variable and the IP address of the client, so that it is easy
to associate a particular file with a particular client. Any incoming message of the same
type and from the same client will overwrite any pre-existing file of that type from the
same client.

So, for example, the file 192.168.0.1.asreq.bin contains the most recent
AS-REQ message exactly as received from the client 192.168.0.1. The file
192.168.0.1.asreq.hex contains the same information, but in hex format.

By default, dumps for all message types are set to false. The default dump directory is
<KDC>/testing/.

19.13.1 as req =
Controls writing of files that contain AS-REQ messages.

19.13.2 as rep =
Controls writing of files that contain AS-REP messages.

-- 55 of 65--

19.13.3 dh private value =
Controls writing of files that contain the value of the Diffie-Hellman private value.

19.13.4 dh public value =
Controls writing of files that contain the value of the Diffie-Hellman public value.

19.13.5 dh shared secret =
Controls writing of files that contain the value of the calculated Diffie-Hellman shared
secret.

19.13.6 directory =
Defines the name of the directory (relative to <KDC>) into which the files are to be
placed. This directory must exist.

19.13.7 krb error =
Controls writing of files that contain KRB-ERROR messages.

19.13.8 local system cert =
Controls writing of files that contain local system certificates received in client messages.
If the certificate causes a fatal parsing error, the KDC may not execute this command.

19.13.9 manufacturer cert =
This is used to control writing of files that contain Manufacturer certificates received in
client messages. If the certificate causes a fatal parsing error, the KDC may not execute
this command.

19.13.10 mta device cert =
Controls writing of files that contain MTA Device certificates received in client messages.
If the certificate causes a fatal parsing error, the KDC may not execute this command.

19.13.11 mta fqdn req =
Controls writing of files that contain MTA FQDN Request messages.

19.13.12 mta fqdn rep =
Controls writing of files that contain MTA FQDN Reply messages.

19.13.13 mta fqdn session key =
Controls writing of files that contain the session key for MTA FQDN messages.

-- 56 of 65--

19.13.14 mta manufacturer cert =
Controls writing of files that contain MTA manufacturer certificates received in client
messages. If the certificate causes a fatal parsing error, the KDC may not execute this
command.

19.13.15 packetcable server cert =
Controls writing of files that contain PacketCable Server certificates (as defined in
Table 43 of the PacketCable security specification) received in client messages. If the
certificate causes a fatal parsing error, the KDC may not execute this command.

19.13.16 ps element cert =
This is used to control writing of files that contain PS Element certificates received in
client messages. If the certificate causes a fatal parsing error, the KDC may not execute
this command.

19.13.17 received datagram =
Controls writing of files that contain datagrams exactly as they are received on port 88
from clients, prior to any processing to determine the message type.

19.13.18 service key =
Controls writing of files that contain the service key used to encrypt a ticket.

19.13.19 service provider cert =
Controls writing of files that contain service provider certificates received in client
messages. If the certificate causes a fatal parsing error, the KDC may not execute this
command.

19.13.20 session key =
Controls writing of files that contain the session key returned in tickets.

19.13.21 tgs req =
Controls writing of files that contain TGS-REQ messages.

19.13.22 tgs rep =
Controls writing of files that contain TGS-REP messages.

19.13.23 ticket =
Controls writing of files that contain tickets. The tickets are exactly as sent to the MTA
(i.e., they are encrypted with the corresponding service key).

-- 57 of 65--

19.13.24 unencrypted ticket =
Controls writing of files that contain an unencrypted version of tickets.

19.14 [violations] section
The [violations] section is used to control most of the negative-testing capability of
the KDC. Prudent security design requires that devices that receive messages should
check every field of a received message to ensure that it matches the expected contents of
that field7. Not only is this prudent, it is required by the security specification. Therefore,
if a device that receives messages from a KDC (either directly or indirectly – for example,
in the form of a ticket) is to be properly tested for conformance, the KDC must be capable
of creating messages that are purposefully non-compliant in a controlled manner. This
allows users and systems integrators to ensure that error conditions are handled correctly
by the recipient of the KDC messages. The [violations] section of the kdc.ini
file is designed to facilitate the process of having the KDC produce messages that do not
comply with the detailed requirements of the security specification. A robust testing
scheme for a client should ensure that the client can detect any of these violations and
will behave appropriately when it does detect one (which generally means that the client
does not accept and act on the message that contains the violation).

19.14.1 Numbered violations
Most entries in the [violations] section take the form:

r<nnnn> = <boolean>

where <nnnn> is a requirement number extracted from the PacketCable Security
Compliance Test Plan and <boolean> is either true or false. (Actually, if the value
of <boolean> is not precisely equal to true, it will be construed as being false.) By
default all violations are assumed to be false.

The KDC supports the values for <nnnn> listed in Table 2.

Table 2

<nnnn> Comment
1928 encryption type not des3-cbc-md5
1929.1 digest algorithm not SHA-1 in AS-REP
1929.2 incorrect nonce (setting the value to “nonzero” forces the nonce in the

response to be nonzero but incorrect; setting the value to “true” sets it
to zero)

1929.3 no KDC certificate
1929.5 no Service Provider certificate
1929.9 extra signerInfo in signerInfos
1929.13 digest algorithm not SHA-1 in signerInfo
1929.14 signature algorithm not RSA in signerInfo
1940.1 typed-data is not REQ-NONCE in KRB-ERROR

7This is directly opposed to the oft-cited Postel Robustness Principle (“be conservative in what you send,
but liberal in what you accept”). The Robustness Principle, while having a wide range of applicability,
should in general not be applied to security systems.

-- 58 of 65--

<nnnn> Comment
1940.2 add checksum even when have no shared key
1943.1 client time not filled out in skew error
1948.1 incorrect pre-auth in reply
1951 forbidden fields added to AS-REP
1953 incorrect calculation of encryptedData
1954 forbidden options added to ticket (in AS-REP only)
1955 encryption type in ticket not set to des3-cbc-md5
1974 forbidden fields added to ticket in TGS-REP
1975 encryption type in TGS-REP not set to des3-cbc-md5
1976.1 no checksum included
1976.2 bad checksum type in KRB-ERROR return to TGS-REQ
1976.3 no REQ-NONCE in KRB-ERROR return to TGS-REQ
1976.4 incorrect value of checksum returned in KRB-ERROR to TGS-REQ
1963 REQ-NONCE not included in KRB-ERROR
1963.1 checksum not included in KRB-ERROR
2343 no boot-time check for cert version
2345 no check for whether cert is RSA
2350 allow no keyUsage extension
2351 allow no basicConstraints extension
2352 allow illegal values in basicConstraints
2353 forbidden signature algorithm
2874 wrong key type for session key in AS-REP
3012 incorrect checksum in encrypted portion of AS-REP
3014 key in ticket is not des3-cbc-md5
3016 incorrect value of checksum
3018.1 incorrect nonce in TGS-REP (setting the value to “nonzero” forces

the nonce in the response to be nonzero but incorrect; setting the
value to “true” sets it to zero)

3018.2 incorrect checksum in TGS-REP; legal values are “true”, “false”,
“zero” (which sets the checksum to zero) and “last byte” (which
changes just the last byte of the checksum

3020 invalid client principal name
3023 server name type is not KRB_NT_SRV_HST
3023.1 server name has incorrect first component
3023.2 server name has incorrect second component
3025.1 MUTUAL-AUTHENTICATION flag is not set
3025.2 USE-SESSION-KEY flag is set
3025.3.1 no sequence number in authenticator
3025.3.2 disallowed OPTIONAL field is present in authenticator
3025.3.4 incorrect encryption type used in authenticator
3026.1 inconsistent seq-number used in KRB-SAFE
3026.2 disallowed OPTIONAL field present in KRB-SAFE
3026.3 incorrect checksum type in KRB-SAFE

For example, if the KDC is to be configured to violate requirements 1929.1 and 1951,
then one conceivable, and particularly disorganised, version of the [violations]
section that would ensure that these violations (and no others) occur looks like this:

-- 59 of 65--

[violations]

r1928 = false

r1929.1 = true

r1929.9 = false

r1976.4 = false

r1951 = true

r1929.5 = false

;r1948.1 = true

A more organised kdc.ini file that accomplishes the same result might contain:

[violations]

r1929.1 = true

r1951 = true

19.14.2 Unnumbered violations
In addition to the violations described in the previous section, a few entries take a
different form, to cover the cases where there is no explicit requirement number in the
security specification.

19.14.2.1 ap error checksum =
This controls whether the checksum in an error reply to an AP-REQ is valid.

19.14.2.2 ap error sequence number =
This controls whether the sequence number in an error reply to an AP-REQ is valid.

19.14.2.3 as rep signature =
This controls whether the signature in the AS-REP verifies correctly.

19.14.2.4 as rep nonce =
This controls violations in the nonce in the AS-REP. Allowed values are true (a zero
nonce is returned), false (the nonce is the expected value) and nonzero (an invalid,
nonzero nonce is returned).

19.14.2.5 checksum =
This controls whether the checksum in the ticket in the AS-REP is valid.

19.15 Minimal configuration

Because an IPfonix, Inc. KDC has so many possible configuration parameters, it can be
daunting to configure the software for a particular network. However, most environments
actually require very few of entries in the kdc.ini file. In particular, when operating the
KDC in a fully compliant mode, the following is a complete example kdc.ini file:

[general]

interface address = 10.1.2.3

-- 60 of 65--

FQDN = kdc.ipfonix.com

Nothing else is required.

Users wishing to create a more complicated kdc.ini file may want to use the program
buildini that is included in the release package.

20 Dynamic Service Keys
Although the security specification implies that dynamic service keys should be
supported, it currently does not place any requirements as to what messages might be
used to implement this. Any mechanism used to support dynamic service keys should at a
minimum, have the following properties:

1. It should allow previously unknown core network devices to register with the
KDC and obtain a service key

2. It should associate an expiration time and version number with a key

3. It should (obviously) be as secure as reasonably possible. In particular, it
should exhibit Perfect Forward Secrecy.

4. Preferably, it should re-use as many as possible of the messages and formats
already required by the specification.

The IPfonix, Inc. KDC includes an implementation of a dynamic keying mechanism that
is designed to meet these goals. We describe it here so that implementors of other devices
on the network can use the provided mechanism to obtain service keys from the KDC
without the need to pre-provision static keys into their devices.

As far as possible, the operations involved in obtaining a dynamic service key mirror
those used by the MTA to establish shared secrets between itself and application servers.

In order to obtain a dynamic service key, the server should perform the following steps:

1. Perform a PKINIT exchange with the KDC. The requirements on this exchange
exactly match the requirements on the PKINIT exchange already described in the
specification, with the exception that in the AS-REQ the server must provide a
sequence of certificates rooted in the Service Provider Root certificate rather than
the MTA Root certificate. The precise requirements for these certificates are
already provided in the security specification.

2. The PKINIT exchange should request a ticket for a service named “createkey”
running on the KDC8. The principal identifier for this service is:

createkey/<KDC FQDN>@REALM

3. Once it has obtained a ticket for the createkey service, the server then submits an
AP-REQ to the KDC. This is exactly as described in section 6.5.2 of the security
specification, with the following changes:

 The DOI is (arbitrarily) set to 250 (decimal)

 The Application Specific Data is an ASN.1 encoded value defined as:
8 In order to meet the requirement of Perfect Forward Secrecy, tickets for the createkey service can be
obtained only via an AS-REQ. They cannot be obtained via a TGS-REQ.

-- 61 of 65--

CREATE_KEY_APPLICATION_SPECIFIC_DATA =

SEQUENCE { duration [0] INTEGER OPTIONAL – duration in seconds

}

where the duration is the requested life of the service key in seconds.

Only the following ciphersuite is recognized:

Authentication Algorithm must have the value 0x00, corresponding to no
authentication

Encryption Transform ID must have the value 0x01, corresponding to 3DES
(because only 3DES service keys are supported by PacketCable)

4. The AP-REP is identical to the AP-REP already described in the security
specification, with the following changes:

 The DOI is (arbitrarily) set to 250 (decimal)

 The kerberos subkey field contains a 24-octet 3DES session key, ks.

 The Application Specific Data contains an ASN.1 OCTET STRING. The contents
of the OCTET STRING are encoded object, padded as necessary to a multiple of
eight octets, and encrypted by 3DES CBC encryption with a null IV and using the
key ks.

 Once decrypted, the OCTET STRING in the Application Specific Data contains a
SERVICE_KEY object:

SERVICE_KEY ::= SEQUENCE {

 PrincipalIdentifier, -- principal identifier associated with the key

 INTEGER, -- key version number

 OCTET STRING, -- key value

 UTCTime OPTIONAL -- key expiration

 }

The PrincipalIdentifier type is defined as:

PrincipalIdentifier ::= SEQUENCE {

PrincipalName,

Realm

}

The contents of the key value OCTET STRING are the desired 24-octet 3DES service
key.

21 PacketCable 1.x IPv6 Support
Officially (i.e, according to the published specifications) PacketCable 1.x does not
support IPv6. However, some operators are experimenting with IPv6 networks, and some
MTA vendors are producing equipment that includes support for IPv6, even on
PacketCable 1.x networks.

-- 62 of 65--

The IPfonix, Inc. KDC includes support for IPv6, even on PacketCable 1.x networks.
Under IPv6, operation is almost identical to the published PacketCable specifications for
IPv4 with just a few minor alterations, as follows:

1. Under normal circumstances, the MTA must place its IPv4 address in the AS-
REQ. When the KDC is operated with IPv6 support, the MTA can instead use an
IPv6 address in this field.

2. During the MTA FQDN messaging, the Provisioning Server normally must
include the IPv4 address of the MTA in the MTA FQDN reply. When operating
with IPv6 support, the Provisioning server may return either an IPv4 address
(length 4 octets) as usual, or it may return any number of IPv4 and IPv6 addresses
in the format specified by PacketCable 2.0.

There is no way to disable IPv4 support on the KDC. When IPv6 is enabled, the KDC
operates in a dual-stack mode, supporting both IPv4 (as usual) and IPv6.

22 Troubleshooting
This section should help with the most common issues related to using the KDC software.
If your question is not addressed here, please carefully read this User Guide in its
entirety. Almost all the e-mails we receive asking for help could have been avoided by
reading this document. We are always happy to provide help, but it is usually faster for
you, the customer, to read the relevant section of this document and find the answer
yourself than it is to contact us with copies of your kdc.ini file and relevant log files,
and then wait while we examine those to determine the cause of the problem. The vast
majority of the problems we see are caused by misconfiguration, so please look at the
KDC log file carefully, since that usually contains a description of any configuration
errors that the KDC can detect.

22.1 Errors during startup
The KDC performs a large number of internal consistency checks during start-up. Any
detected inconsistency will result in an error message being sent to the console and to the
log, after which the KDC will close itself down.

Below are listed the most common reasons we see for the KDC refusing to start. This is,
however, by no means an exhaustive list. Many other errors in configuration are possible.
The error message on the console and in the log file should be sufficiently clear to enable
you to determine exactly what the problem is. If you are unable to interpret the error
message, please e-mail it to us and we will explain exactly what it means.

22.1.1 The KDC says that there is an “unexpected number of
chains” in a certificate directory.

The KDC expects to see exactly two chains of certificates in each directory containing
certificates. One chain consists of a complete service provider hierarchy (certificates for:
the service provider root, the service provider, an optional local system, and the KDC).
The second chain consists of a single certificate: the root certificate for the client device.
If the KDC finds more (or fewer) certificates than these in the directory, it will complain

-- 63 of 65--

that there is an unexpected number of chains, and then abort. The solution, then, is to
provide exactly the required certificates: no more, and no less. (With fewer certificates
than the required number, the KDC would be unable to generate the correct chains needed
to operate correctly; with more certificates than the required number, the KDC may be
unable to determine which certificates the operator wishes to use.)

22.2 Errors during operation
The KDC is very careful to perform all the checks required by the security specification,
in addition to common-sense checks (such as signature verifications) that are technically
not required by the security specification. As a result, there is a large number of errors that
may be triggered when a KDC processes incoming messaging. Most of these cause a
KRB-ERR message to be sent to the client. The KRB-ERR message should contain a
reasonable textual description of the error; a more detailed explanation should be written
to the logfile. We here describe errors that may not be self-evident.

22.2.1 The KDC processes an AS-REQ and produces an AS-REP,
but the MTA will not accept it.

Almost certainly, this is caused by a certificate mismatch. The AS-REP contains several
certificates that are rooted in the Service Provider Root certificate that is provisioned on
to the KDC. The MTA verifies the hierarchy by checking that they are rooted in the
Service Provider Root certificate that is on the MTA (typically, this certificate is placed
into the MTA firmware during manufacture). Consequently, if the Service Provider Root
certificate on the MTA is not identical to the one on the KDC, a mismatch occurs and the
MTA rejects the response.

Unfortunately, MTAs are often not provided with a good debugging interface; sometimes
an MTA will explain that there is a certificate mismatch; more likely it will complain
vaguely about an “incorrect certificate found in reply”, or, more misleadingly, “certificate
missing”. Often an MTA has no debugging interface at all, and there is no externally-
accessible method to determine why the MTA has rejected the response: all the user sees
is that the MTA retries a few times and eventually gives up or reboots, just to cycle
through the sequence again.

If the KDC produces an AS-REP, you should have a very high degree of confidence that
the KDC is happy; there are no known ways for a KDC to produce an invalid AS-REP
(assuming, of course, that one is not creating a message that is invalid by virtue of
settings in the [violations] section of the kdc.ini file).

So the solution for this problem is to check that the Service Provider Root certificate on
the MTA is identical to the one on the KDC. How one does this varies from MTA to
MTA, and often can only be done by directly contacting the MTA manufacturer and
asking for a copy of the Service Provider Root certificate(s) supported by the MTA.

22.2.2 The KDC seems to be ignoring an entry in the kdc.ini file
If the KDC seems to be ignoring an entry in the kdc.ini file, there are two common
causes:

-- 64 of 65--

1. A misspelling in the line of the kdc.ini file. Check that you have spelled the
command correctly.

2. You are requesting behaviour that requires the KDC to be operating in non-compliant
mode, but have not inserted the command compliant = false into the [compliance]
section. To fix this, create a [compliance] section if one does not exist, and insert the
command compliant = false into the section.

-- 65 of 65--

	1 Intended Audience
	2 PacketCable/CableHome KDC Versions
	3 Hardware Requirements
	4 Software Requirements
	4.1 Linux Software Requirements

	5 Overview
	6 Installing the Software
	6.1 Running multiple KDCs on one machine
	6.2 Directory hierarchy
	6.2.1 Files in <KDC>
	6.2.2 Files in <INI>

	7 Files in <INI>/keys
	8 Files in <INI>/packetcable/certificates* and <INI>/cablehome/certificates*
	8.1 Certificate Use

	9 The <INI>/allow and <INI>/deny directories
	10 Time
	11 Log file
	12 PacketCable 2.0
	13 Command Line Options
	13.1 -append
	13.2 -cout <filename>
	13.3 -cwd <directory-name>
	13.4 -D
	13.5 -named-pipe <named-pipe-name>
	13.6 -verbose-cert-check
	13.7 --version

	14 Operating the PacketCable pseudo‑provserver
	14.1 Leaking SNMPv3 keys
	14.2 REKEY

	15 OCSP
	16 Jabber
	17 Administration
	18 Monitoring Statistics
	19 INI configuration file
	19.1 [compliance] section
	19.1.1 compliant =

	19.2 [admin] section
	19.2.1 admin =
	19.2.2 password =
	19.2.3 port =

	19.3 [checks] section
	19.3.1 check authority key identifier =
	19.3.2 check basic constraints =
	19.3.3 check kdc cert =
	19.3.4 check key usage =
	19.3.5 check local system cert =
	19.3.6 check manufacturer cert =
	19.3.7 check manufacturer certificate signature =
	19.3.8 check mta device cert =
	19.3.9 check mta device certificate signature =
	19.3.10 check mta manufacturer cert =
	19.3.11 check mta manufacturer certificate signature =
	19.3.12 check pkauth checksum =
	19.3.13 check ps element cert =
	19.3.14 check ps element certificate signature =
	19.3.15 check service provider cert =

	19.4 [general] section
	19.4.1 allow duplicate cert keys =
	19.4.2 allow kdc cert loose subject =
	19.4.3 allow kdc cert principal name mismatch =
	19.4.4 allow kdc cert realm mismatch =
	19.4.5 allowed packets per minute =
	19.4.6 check company name =
	19.4.7 check ip address =
	19.4.8 console debug level =
	19.4.9 delete old logs =
	19.4.10 dh store size =
	19.4.11 drop dos datagrams =
	19.4.12 dynamic service keys =
	19.4.13 element id =
	19.4.14 force error reply to as req =
	19.4.15 force error reply to tgs req =
	19.4.16 FQDN =
	19.4.17 interface address =
	19.4.18 log debug level =
	19.4.19 log timer =
	19.4.20 maximum client clock skew =
	19.4.21 maximum log file size =
	19.4.22 maximum ps backoff =
	19.4.23 maximum ps clock skew =
	19.4.24 maximum ticket duration =
	19.4.25 minimum ps backoff =
	19.4.26 minimum ticket duration =
	19.4.27 n saved log files =
	19.4.28 pc20 =
	19.4.29 peer<n> =
	19.4.30 peering =
	19.4.31 ping =
	19.4.32 print thread info =
	19.4.33 provisioning server is available =
	19.4.34 ps message cache size =
	19.4.35 realm =
	19.4.36 replay cache size =
	19.4.37 require critical keyusage =
	19.4.38 require ip address in requests =
	19.4.39 respond from port 88 =
	19.4.40 send root certificate =
	19.4.41 status file name =
	19.4.42 support first oakley group =
	19.4.43 test for duplicate datagram =
	19.4.44 test socket port =
	19.4.45 test sockets =
	19.4.46 ticket extension =
	19.4.47 worker threads =

	19.5 [ipv6] section
	19.5.1 enable =
	19.5.2 fqdn =
	19.5.3 ipv6 in mta fqdn =
	19.5.4 kerberos enable =
	19.5.5 provserver enable =

	19.6 [jabber] section
	19.6.1 destination =
	19.6.2 jid =
	19.6.3 password =

	19.7 [ocsp] section
	19.7.1 check device certificates =
	19.7.2 default =
	19.7.3 interface address =
	19.7.4 max skew =
	19.7.5 ocsp =
	19.7.6 port =
	19.7.7 responder address =
	19.7.8 timeout =

	19.8 [pkcross] section
	19.8.1 lifetime =
	19.8.2 maximum backoff =
	19.8.3 maximum skew =
	19.8.4 nameserver =

	19.9 [pseudo ps] section
	19.9.1 allow non-standard source port =
	19.9.2 allow wakeup =
	19.9.3 append to leak keys file =
	19.9.4 ap-rep subkey =
	19.9.5 check OIDs =
	19.9.6 ciphersuites =
	19.9.7 compliant =
	19.9.8 delay wakeup keys =
	19.9.9 eue config file hash =
	19.9.10 eue config file key =
	19.9.11 eue config url =
	19.9.12 force error reply to ap req =
	19.9.13 interface address =
	19.9.14 leak keys file =
	19.9.15 leak keys named pipe =
	19.9.16 mac prov filename =
	19.9.17 mta config file hash =
	19.9.18 mta config file key =
	19.9.19 mta config url =
	19.9.20 pc 1.5 =
	19.9.21 ping =
	19.9.22 pseudo ps =
	19.9.23 pseudo ps engine id =
	19.9.24 pseudo ps fqdn =
	19.9.25 pseudo ps prov filename =
	19.9.26 pseudo ps snmp port =
	19.9.27 snmp enable =
	19.9.28 snmpv1 response =
	19.9.29 worker threads =

	19.10 [pseudo ps ipv6] section
	19.10.1 enable =
	19.10.2 fqdn =

	19.11 [rekey] section
	19.11.1 ciphersuites =
	19.11.2 enable =
	19.11.3 grace period =
	19.11.4 lifetime =
	19.11.5 re-establish =
	19.11.6 server =
	19.11.7 session key =
	19.11.8 spi =

	19.12 [statistics] section
	19.12.1 named pipe =

	19.13 [testing] section
	19.13.1 as req =
	19.13.2 as rep =
	19.13.3 dh private value =
	19.13.4 dh public value =
	19.13.5 dh shared secret =
	19.13.6 directory =
	19.13.7 krb error =
	19.13.8 local system cert =
	19.13.9 manufacturer cert =
	19.13.10 mta device cert =
	19.13.11 mta fqdn req =
	19.13.12 mta fqdn rep =
	19.13.13 mta fqdn session key =
	19.13.14 mta manufacturer cert =
	19.13.15 packetcable server cert =
	19.13.16 ps element cert =
	19.13.17 received datagram =
	19.13.18 service key =
	19.13.19 service provider cert =
	19.13.20 session key =
	19.13.21 tgs req =
	19.13.22 tgs rep =
	19.13.23 ticket =
	19.13.24 unencrypted ticket =

	19.14 [violations] section
	19.14.1 Numbered violations
	19.14.2 Unnumbered violations
	19.14.2.1 ap error checksum =
	19.14.2.2 ap error sequence number =
	19.14.2.3 as rep signature =
	19.14.2.4 as rep nonce =
	19.14.2.5 checksum =

	19.15 Minimal configuration

	20 Dynamic Service Keys
	21 PacketCable 1.x IPv6 Support
	22 Troubleshooting
	22.1 Errors during startup
	22.1.1 The KDC says that there is an “unexpected number of chains” in a certificate directory.

	22.2 Errors during operation
	22.2.1 The KDC processes an AS-REQ and produces an AS‑REP, but the MTA will not accept it.
	22.2.2 The KDC seems to be ignoring an entry in the kdc.ini file

